L(s) = 1 | − 1.93·3-s − 5-s − 2.38·7-s + 0.735·9-s − 5.33·11-s − 4.53·13-s + 1.93·15-s + 1.81·17-s − 7.00·19-s + 4.60·21-s + 23-s + 25-s + 4.37·27-s − 0.118·29-s + 0.884·31-s + 10.3·33-s + 2.38·35-s + 7.51·37-s + 8.77·39-s − 1.45·41-s − 0.735·45-s − 10.4·47-s − 1.32·49-s − 3.50·51-s − 9.42·53-s + 5.33·55-s + 13.5·57-s + ⋯ |
L(s) = 1 | − 1.11·3-s − 0.447·5-s − 0.900·7-s + 0.245·9-s − 1.60·11-s − 1.25·13-s + 0.499·15-s + 0.440·17-s − 1.60·19-s + 1.00·21-s + 0.208·23-s + 0.200·25-s + 0.842·27-s − 0.0219·29-s + 0.158·31-s + 1.79·33-s + 0.402·35-s + 1.23·37-s + 1.40·39-s − 0.226·41-s − 0.109·45-s − 1.52·47-s − 0.189·49-s − 0.491·51-s − 1.29·53-s + 0.719·55-s + 1.79·57-s + ⋯ |
Λ(s)=(=(1840s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1840s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
0.2478813656 |
L(21) |
≈ |
0.2478813656 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 5 | 1+T |
| 23 | 1−T |
good | 3 | 1+1.93T+3T2 |
| 7 | 1+2.38T+7T2 |
| 11 | 1+5.33T+11T2 |
| 13 | 1+4.53T+13T2 |
| 17 | 1−1.81T+17T2 |
| 19 | 1+7.00T+19T2 |
| 29 | 1+0.118T+29T2 |
| 31 | 1−0.884T+31T2 |
| 37 | 1−7.51T+37T2 |
| 41 | 1+1.45T+41T2 |
| 43 | 1+43T2 |
| 47 | 1+10.4T+47T2 |
| 53 | 1+9.42T+53T2 |
| 59 | 1+7.79T+59T2 |
| 61 | 1+2.80T+61T2 |
| 67 | 1−3.11T+67T2 |
| 71 | 1−13.5T+71T2 |
| 73 | 1−12.4T+73T2 |
| 79 | 1+6.80T+79T2 |
| 83 | 1−13.5T+83T2 |
| 89 | 1−2.89T+89T2 |
| 97 | 1+1.97T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.491403231926375014812525892123, −8.257065013165311266685521909733, −7.69066969321607573581739248795, −6.66916328489374909934527829284, −6.12595048408386719338227348832, −5.10963416088376515193759381939, −4.64863388003871234103167066276, −3.25875493881566695097223488837, −2.37603137320533751218488741797, −0.32957100908932285842405515070,
0.32957100908932285842405515070, 2.37603137320533751218488741797, 3.25875493881566695097223488837, 4.64863388003871234103167066276, 5.10963416088376515193759381939, 6.12595048408386719338227348832, 6.66916328489374909934527829284, 7.69066969321607573581739248795, 8.257065013165311266685521909733, 9.491403231926375014812525892123