Properties

Label 2-1872-1.1-c1-0-29
Degree $2$
Conductor $1872$
Sign $-1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 0.561·5-s + 2.56·7-s − 5.12·11-s + 13-s − 5.68·17-s − 5.12·19-s − 8·23-s − 4.68·25-s + 2·29-s − 4·31-s + 1.43·35-s + 9.68·37-s + 3.12·41-s − 5.43·43-s − 0.315·47-s − 0.438·49-s − 3.12·53-s − 2.87·55-s + 5.12·59-s + 11.1·61-s + 0.561·65-s + 5.12·67-s − 7.68·71-s − 6·73-s − 13.1·77-s − 8·79-s + 2.24·83-s + ⋯
L(s)  = 1  + 0.251·5-s + 0.968·7-s − 1.54·11-s + 0.277·13-s − 1.37·17-s − 1.17·19-s − 1.66·23-s − 0.936·25-s + 0.371·29-s − 0.718·31-s + 0.243·35-s + 1.59·37-s + 0.487·41-s − 0.829·43-s − 0.0459·47-s − 0.0626·49-s − 0.428·53-s − 0.387·55-s + 0.666·59-s + 1.42·61-s + 0.0696·65-s + 0.625·67-s − 0.912·71-s − 0.702·73-s − 1.49·77-s − 0.900·79-s + 0.246·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 0.561T + 5T^{2} \)
7 \( 1 - 2.56T + 7T^{2} \)
11 \( 1 + 5.12T + 11T^{2} \)
17 \( 1 + 5.68T + 17T^{2} \)
19 \( 1 + 5.12T + 19T^{2} \)
23 \( 1 + 8T + 23T^{2} \)
29 \( 1 - 2T + 29T^{2} \)
31 \( 1 + 4T + 31T^{2} \)
37 \( 1 - 9.68T + 37T^{2} \)
41 \( 1 - 3.12T + 41T^{2} \)
43 \( 1 + 5.43T + 43T^{2} \)
47 \( 1 + 0.315T + 47T^{2} \)
53 \( 1 + 3.12T + 53T^{2} \)
59 \( 1 - 5.12T + 59T^{2} \)
61 \( 1 - 11.1T + 61T^{2} \)
67 \( 1 - 5.12T + 67T^{2} \)
71 \( 1 + 7.68T + 71T^{2} \)
73 \( 1 + 6T + 73T^{2} \)
79 \( 1 + 8T + 79T^{2} \)
83 \( 1 - 2.24T + 83T^{2} \)
89 \( 1 + 10T + 89T^{2} \)
97 \( 1 + 8.24T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.558168308617296678870839936973, −8.189817469536320995498381755327, −7.42939004080712213353533162144, −6.32165813797797317321200663996, −5.64152780024777740854601260775, −4.68767418587151149340530812422, −4.03084740882118211043876039324, −2.49436529164931831797013839525, −1.90088314593070488734462830117, 0, 1.90088314593070488734462830117, 2.49436529164931831797013839525, 4.03084740882118211043876039324, 4.68767418587151149340530812422, 5.64152780024777740854601260775, 6.32165813797797317321200663996, 7.42939004080712213353533162144, 8.189817469536320995498381755327, 8.558168308617296678870839936973

Graph of the $Z$-function along the critical line