L(s) = 1 | − 2.82·5-s − 0.828·7-s − 0.828·11-s + 13-s − 4·17-s − 0.828·19-s + 4·23-s + 3.00·25-s − 4·29-s + 10.4·31-s + 2.34·35-s + 2·37-s − 1.17·41-s + 5.65·43-s + 6.48·47-s − 6.31·49-s − 2.34·53-s + 2.34·55-s + 0.828·59-s + 9.31·61-s − 2.82·65-s + 0.828·67-s + 14.4·71-s + 6·73-s + 0.686·77-s + 4·79-s − 8.82·83-s + ⋯ |
L(s) = 1 | − 1.26·5-s − 0.313·7-s − 0.249·11-s + 0.277·13-s − 0.970·17-s − 0.190·19-s + 0.834·23-s + 0.600·25-s − 0.742·29-s + 1.88·31-s + 0.396·35-s + 0.328·37-s − 0.182·41-s + 0.862·43-s + 0.945·47-s − 0.901·49-s − 0.321·53-s + 0.315·55-s + 0.107·59-s + 1.19·61-s − 0.350·65-s + 0.101·67-s + 1.71·71-s + 0.702·73-s + 0.0782·77-s + 0.450·79-s − 0.969·83-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.068027690 |
L(21) |
≈ |
1.068027690 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1−T |
good | 5 | 1+2.82T+5T2 |
| 7 | 1+0.828T+7T2 |
| 11 | 1+0.828T+11T2 |
| 17 | 1+4T+17T2 |
| 19 | 1+0.828T+19T2 |
| 23 | 1−4T+23T2 |
| 29 | 1+4T+29T2 |
| 31 | 1−10.4T+31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+1.17T+41T2 |
| 43 | 1−5.65T+43T2 |
| 47 | 1−6.48T+47T2 |
| 53 | 1+2.34T+53T2 |
| 59 | 1−0.828T+59T2 |
| 61 | 1−9.31T+61T2 |
| 67 | 1−0.828T+67T2 |
| 71 | 1−14.4T+71T2 |
| 73 | 1−6T+73T2 |
| 79 | 1−4T+79T2 |
| 83 | 1+8.82T+83T2 |
| 89 | 1−4.48T+89T2 |
| 97 | 1−17.3T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.103908612675923452079127297892, −8.378029854677077491711979960021, −7.73011920376894555226821416921, −6.91482545291643159379085703303, −6.19315682071802761847884512389, −4.99862145026304318003221416791, −4.22702497616863086091706436193, −3.43449583228082154987019949962, −2.39409239714770356407675075129, −0.68307113866169886014610049280,
0.68307113866169886014610049280, 2.39409239714770356407675075129, 3.43449583228082154987019949962, 4.22702497616863086091706436193, 4.99862145026304318003221416791, 6.19315682071802761847884512389, 6.91482545291643159379085703303, 7.73011920376894555226821416921, 8.378029854677077491711979960021, 9.103908612675923452079127297892