Properties

Label 2-1872-1.1-c1-0-3
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2.82·5-s − 0.828·7-s − 0.828·11-s + 13-s − 4·17-s − 0.828·19-s + 4·23-s + 3.00·25-s − 4·29-s + 10.4·31-s + 2.34·35-s + 2·37-s − 1.17·41-s + 5.65·43-s + 6.48·47-s − 6.31·49-s − 2.34·53-s + 2.34·55-s + 0.828·59-s + 9.31·61-s − 2.82·65-s + 0.828·67-s + 14.4·71-s + 6·73-s + 0.686·77-s + 4·79-s − 8.82·83-s + ⋯
L(s)  = 1  − 1.26·5-s − 0.313·7-s − 0.249·11-s + 0.277·13-s − 0.970·17-s − 0.190·19-s + 0.834·23-s + 0.600·25-s − 0.742·29-s + 1.88·31-s + 0.396·35-s + 0.328·37-s − 0.182·41-s + 0.862·43-s + 0.945·47-s − 0.901·49-s − 0.321·53-s + 0.315·55-s + 0.107·59-s + 1.19·61-s − 0.350·65-s + 0.101·67-s + 1.71·71-s + 0.702·73-s + 0.0782·77-s + 0.450·79-s − 0.969·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.068027690\)
\(L(\frac12)\) \(\approx\) \(1.068027690\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 2.82T + 5T^{2} \)
7 \( 1 + 0.828T + 7T^{2} \)
11 \( 1 + 0.828T + 11T^{2} \)
17 \( 1 + 4T + 17T^{2} \)
19 \( 1 + 0.828T + 19T^{2} \)
23 \( 1 - 4T + 23T^{2} \)
29 \( 1 + 4T + 29T^{2} \)
31 \( 1 - 10.4T + 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 + 1.17T + 41T^{2} \)
43 \( 1 - 5.65T + 43T^{2} \)
47 \( 1 - 6.48T + 47T^{2} \)
53 \( 1 + 2.34T + 53T^{2} \)
59 \( 1 - 0.828T + 59T^{2} \)
61 \( 1 - 9.31T + 61T^{2} \)
67 \( 1 - 0.828T + 67T^{2} \)
71 \( 1 - 14.4T + 71T^{2} \)
73 \( 1 - 6T + 73T^{2} \)
79 \( 1 - 4T + 79T^{2} \)
83 \( 1 + 8.82T + 83T^{2} \)
89 \( 1 - 4.48T + 89T^{2} \)
97 \( 1 - 17.3T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.103908612675923452079127297892, −8.378029854677077491711979960021, −7.73011920376894555226821416921, −6.91482545291643159379085703303, −6.19315682071802761847884512389, −4.99862145026304318003221416791, −4.22702497616863086091706436193, −3.43449583228082154987019949962, −2.39409239714770356407675075129, −0.68307113866169886014610049280, 0.68307113866169886014610049280, 2.39409239714770356407675075129, 3.43449583228082154987019949962, 4.22702497616863086091706436193, 4.99862145026304318003221416791, 6.19315682071802761847884512389, 6.91482545291643159379085703303, 7.73011920376894555226821416921, 8.378029854677077491711979960021, 9.103908612675923452079127297892

Graph of the $Z$-function along the critical line