L(s) = 1 | + 6·11-s − 13-s − 2·17-s + 4·23-s − 5·25-s + 6·29-s + 4·31-s − 2·37-s − 4·43-s + 10·47-s − 7·49-s + 10·53-s − 6·59-s − 6·61-s + 12·67-s + 2·71-s + 6·73-s + 16·79-s + 6·83-s − 4·89-s + 14·97-s + 6·101-s + 8·103-s − 8·107-s − 6·109-s + 10·113-s + ⋯ |
L(s) = 1 | + 1.80·11-s − 0.277·13-s − 0.485·17-s + 0.834·23-s − 25-s + 1.11·29-s + 0.718·31-s − 0.328·37-s − 0.609·43-s + 1.45·47-s − 49-s + 1.37·53-s − 0.781·59-s − 0.768·61-s + 1.46·67-s + 0.237·71-s + 0.702·73-s + 1.80·79-s + 0.658·83-s − 0.423·89-s + 1.42·97-s + 0.597·101-s + 0.788·103-s − 0.773·107-s − 0.574·109-s + 0.940·113-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.917489087 |
L(21) |
≈ |
1.917489087 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+T |
good | 5 | 1+pT2 |
| 7 | 1+pT2 |
| 11 | 1−6T+pT2 |
| 17 | 1+2T+pT2 |
| 19 | 1+pT2 |
| 23 | 1−4T+pT2 |
| 29 | 1−6T+pT2 |
| 31 | 1−4T+pT2 |
| 37 | 1+2T+pT2 |
| 41 | 1+pT2 |
| 43 | 1+4T+pT2 |
| 47 | 1−10T+pT2 |
| 53 | 1−10T+pT2 |
| 59 | 1+6T+pT2 |
| 61 | 1+6T+pT2 |
| 67 | 1−12T+pT2 |
| 71 | 1−2T+pT2 |
| 73 | 1−6T+pT2 |
| 79 | 1−16T+pT2 |
| 83 | 1−6T+pT2 |
| 89 | 1+4T+pT2 |
| 97 | 1−14T+pT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.184294838662426330599174276496, −8.603027162415544040212315107506, −7.63584831683610361882108019767, −6.69087411967754787433668721392, −6.28943189296774299916363973955, −5.09555003610369654280744252248, −4.24486360092282550965285188483, −3.43299310554595416240944294936, −2.19080394870072878544535794019, −0.986325425668759395181242182793,
0.986325425668759395181242182793, 2.19080394870072878544535794019, 3.43299310554595416240944294936, 4.24486360092282550965285188483, 5.09555003610369654280744252248, 6.28943189296774299916363973955, 6.69087411967754787433668721392, 7.63584831683610361882108019767, 8.603027162415544040212315107506, 9.184294838662426330599174276496