Properties

Label 2-1872-1.1-c1-0-8
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6·11-s − 13-s − 2·17-s + 4·23-s − 5·25-s + 6·29-s + 4·31-s − 2·37-s − 4·43-s + 10·47-s − 7·49-s + 10·53-s − 6·59-s − 6·61-s + 12·67-s + 2·71-s + 6·73-s + 16·79-s + 6·83-s − 4·89-s + 14·97-s + 6·101-s + 8·103-s − 8·107-s − 6·109-s + 10·113-s + ⋯
L(s)  = 1  + 1.80·11-s − 0.277·13-s − 0.485·17-s + 0.834·23-s − 25-s + 1.11·29-s + 0.718·31-s − 0.328·37-s − 0.609·43-s + 1.45·47-s − 49-s + 1.37·53-s − 0.781·59-s − 0.768·61-s + 1.46·67-s + 0.237·71-s + 0.702·73-s + 1.80·79-s + 0.658·83-s − 0.423·89-s + 1.42·97-s + 0.597·101-s + 0.788·103-s − 0.773·107-s − 0.574·109-s + 0.940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.917489087\)
\(L(\frac12)\) \(\approx\) \(1.917489087\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \)
7 \( 1 + p T^{2} \)
11 \( 1 - 6 T + p T^{2} \)
17 \( 1 + 2 T + p T^{2} \)
19 \( 1 + p T^{2} \)
23 \( 1 - 4 T + p T^{2} \)
29 \( 1 - 6 T + p T^{2} \)
31 \( 1 - 4 T + p T^{2} \)
37 \( 1 + 2 T + p T^{2} \)
41 \( 1 + p T^{2} \)
43 \( 1 + 4 T + p T^{2} \)
47 \( 1 - 10 T + p T^{2} \)
53 \( 1 - 10 T + p T^{2} \)
59 \( 1 + 6 T + p T^{2} \)
61 \( 1 + 6 T + p T^{2} \)
67 \( 1 - 12 T + p T^{2} \)
71 \( 1 - 2 T + p T^{2} \)
73 \( 1 - 6 T + p T^{2} \)
79 \( 1 - 16 T + p T^{2} \)
83 \( 1 - 6 T + p T^{2} \)
89 \( 1 + 4 T + p T^{2} \)
97 \( 1 - 14 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.184294838662426330599174276496, −8.603027162415544040212315107506, −7.63584831683610361882108019767, −6.69087411967754787433668721392, −6.28943189296774299916363973955, −5.09555003610369654280744252248, −4.24486360092282550965285188483, −3.43299310554595416240944294936, −2.19080394870072878544535794019, −0.986325425668759395181242182793, 0.986325425668759395181242182793, 2.19080394870072878544535794019, 3.43299310554595416240944294936, 4.24486360092282550965285188483, 5.09555003610369654280744252248, 6.28943189296774299916363973955, 6.69087411967754787433668721392, 7.63584831683610361882108019767, 8.603027162415544040212315107506, 9.184294838662426330599174276496

Graph of the $Z$-function along the critical line