L(s) = 1 | + 16·5-s − 28·7-s + 34·11-s − 13·13-s − 138·17-s − 108·19-s − 52·23-s + 131·25-s + 190·29-s + 176·31-s − 448·35-s + 342·37-s − 240·41-s + 140·43-s + 454·47-s + 441·49-s − 198·53-s + 544·55-s − 154·59-s + 34·61-s − 208·65-s + 656·67-s + 550·71-s + 614·73-s − 952·77-s − 8·79-s + 762·83-s + ⋯ |
L(s) = 1 | + 1.43·5-s − 1.51·7-s + 0.931·11-s − 0.277·13-s − 1.96·17-s − 1.30·19-s − 0.471·23-s + 1.04·25-s + 1.21·29-s + 1.01·31-s − 2.16·35-s + 1.51·37-s − 0.914·41-s + 0.496·43-s + 1.40·47-s + 9/7·49-s − 0.513·53-s + 1.33·55-s − 0.339·59-s + 0.0713·61-s − 0.396·65-s + 1.19·67-s + 0.919·71-s + 0.984·73-s − 1.40·77-s − 0.0113·79-s + 1.00·83-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(1872s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.090123732 |
L(21) |
≈ |
2.090123732 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+pT |
good | 5 | 1−16T+p3T2 |
| 7 | 1+4pT+p3T2 |
| 11 | 1−34T+p3T2 |
| 17 | 1+138T+p3T2 |
| 19 | 1+108T+p3T2 |
| 23 | 1+52T+p3T2 |
| 29 | 1−190T+p3T2 |
| 31 | 1−176T+p3T2 |
| 37 | 1−342T+p3T2 |
| 41 | 1+240T+p3T2 |
| 43 | 1−140T+p3T2 |
| 47 | 1−454T+p3T2 |
| 53 | 1+198T+p3T2 |
| 59 | 1+154T+p3T2 |
| 61 | 1−34T+p3T2 |
| 67 | 1−656T+p3T2 |
| 71 | 1−550T+p3T2 |
| 73 | 1−614T+p3T2 |
| 79 | 1+8T+p3T2 |
| 83 | 1−762T+p3T2 |
| 89 | 1−444T+p3T2 |
| 97 | 1−1022T+p3T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.153783204566902111820325221224, −8.329023603381918006652985013027, −6.82006329789906365421283936615, −6.39920708926293870666574683470, −6.09658346351003424337354943804, −4.74767910479822582247339848330, −3.93779674113940551225010265874, −2.64208343378806915709390516261, −2.10152691088045426321000263779, −0.64969236614616481216090046033,
0.64969236614616481216090046033, 2.10152691088045426321000263779, 2.64208343378806915709390516261, 3.93779674113940551225010265874, 4.74767910479822582247339848330, 6.09658346351003424337354943804, 6.39920708926293870666574683470, 6.82006329789906365421283936615, 8.329023603381918006652985013027, 9.153783204566902111820325221224