Properties

Label 2-1872-1.1-c3-0-23
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 16·5-s − 28·7-s + 34·11-s − 13·13-s − 138·17-s − 108·19-s − 52·23-s + 131·25-s + 190·29-s + 176·31-s − 448·35-s + 342·37-s − 240·41-s + 140·43-s + 454·47-s + 441·49-s − 198·53-s + 544·55-s − 154·59-s + 34·61-s − 208·65-s + 656·67-s + 550·71-s + 614·73-s − 952·77-s − 8·79-s + 762·83-s + ⋯
L(s)  = 1  + 1.43·5-s − 1.51·7-s + 0.931·11-s − 0.277·13-s − 1.96·17-s − 1.30·19-s − 0.471·23-s + 1.04·25-s + 1.21·29-s + 1.01·31-s − 2.16·35-s + 1.51·37-s − 0.914·41-s + 0.496·43-s + 1.40·47-s + 9/7·49-s − 0.513·53-s + 1.33·55-s − 0.339·59-s + 0.0713·61-s − 0.396·65-s + 1.19·67-s + 0.919·71-s + 0.984·73-s − 1.40·77-s − 0.0113·79-s + 1.00·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(2.090123732\)
\(L(\frac12)\) \(\approx\) \(2.090123732\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 + p T \)
good5 \( 1 - 16 T + p^{3} T^{2} \)
7 \( 1 + 4 p T + p^{3} T^{2} \)
11 \( 1 - 34 T + p^{3} T^{2} \)
17 \( 1 + 138 T + p^{3} T^{2} \)
19 \( 1 + 108 T + p^{3} T^{2} \)
23 \( 1 + 52 T + p^{3} T^{2} \)
29 \( 1 - 190 T + p^{3} T^{2} \)
31 \( 1 - 176 T + p^{3} T^{2} \)
37 \( 1 - 342 T + p^{3} T^{2} \)
41 \( 1 + 240 T + p^{3} T^{2} \)
43 \( 1 - 140 T + p^{3} T^{2} \)
47 \( 1 - 454 T + p^{3} T^{2} \)
53 \( 1 + 198 T + p^{3} T^{2} \)
59 \( 1 + 154 T + p^{3} T^{2} \)
61 \( 1 - 34 T + p^{3} T^{2} \)
67 \( 1 - 656 T + p^{3} T^{2} \)
71 \( 1 - 550 T + p^{3} T^{2} \)
73 \( 1 - 614 T + p^{3} T^{2} \)
79 \( 1 + 8 T + p^{3} T^{2} \)
83 \( 1 - 762 T + p^{3} T^{2} \)
89 \( 1 - 444 T + p^{3} T^{2} \)
97 \( 1 - 1022 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.153783204566902111820325221224, −8.329023603381918006652985013027, −6.82006329789906365421283936615, −6.39920708926293870666574683470, −6.09658346351003424337354943804, −4.74767910479822582247339848330, −3.93779674113940551225010265874, −2.64208343378806915709390516261, −2.10152691088045426321000263779, −0.64969236614616481216090046033, 0.64969236614616481216090046033, 2.10152691088045426321000263779, 2.64208343378806915709390516261, 3.93779674113940551225010265874, 4.74767910479822582247339848330, 6.09658346351003424337354943804, 6.39920708926293870666574683470, 6.82006329789906365421283936615, 8.329023603381918006652985013027, 9.153783204566902111820325221224

Graph of the $Z$-function along the critical line