L(s) = 1 | − 19.1·5-s − 35.1·7-s + 26·11-s − 13·13-s + 36.2·17-s + 95.5·19-s − 161.·23-s + 240.·25-s + 91.3·29-s + 266.·31-s + 671.·35-s − 149.·37-s + 77.8·41-s − 183.·43-s − 60.6·47-s + 890.·49-s − 281.·53-s − 496.·55-s − 542.·59-s + 65.0·61-s + 248.·65-s + 1.03e3·67-s + 1.04e3·71-s + 483.·73-s − 912.·77-s + 1.33e3·79-s + 812.·83-s + ⋯ |
L(s) = 1 | − 1.70·5-s − 1.89·7-s + 0.712·11-s − 0.277·13-s + 0.516·17-s + 1.15·19-s − 1.46·23-s + 1.92·25-s + 0.585·29-s + 1.54·31-s + 3.24·35-s − 0.664·37-s + 0.296·41-s − 0.651·43-s − 0.188·47-s + 2.59·49-s − 0.729·53-s − 1.21·55-s − 1.19·59-s + 0.136·61-s + 0.474·65-s + 1.88·67-s + 1.74·71-s + 0.774·73-s − 1.35·77-s + 1.90·79-s + 1.07·83-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(1872s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+13T |
good | 5 | 1+19.1T+125T2 |
| 7 | 1+35.1T+343T2 |
| 11 | 1−26T+1.33e3T2 |
| 17 | 1−36.2T+4.91e3T2 |
| 19 | 1−95.5T+6.85e3T2 |
| 23 | 1+161.T+1.21e4T2 |
| 29 | 1−91.3T+2.43e4T2 |
| 31 | 1−266.T+2.97e4T2 |
| 37 | 1+149.T+5.06e4T2 |
| 41 | 1−77.8T+6.89e4T2 |
| 43 | 1+183.T+7.95e4T2 |
| 47 | 1+60.6T+1.03e5T2 |
| 53 | 1+281.T+1.48e5T2 |
| 59 | 1+542.T+2.05e5T2 |
| 61 | 1−65.0T+2.26e5T2 |
| 67 | 1−1.03e3T+3.00e5T2 |
| 71 | 1−1.04e3T+3.57e5T2 |
| 73 | 1−483.T+3.89e5T2 |
| 79 | 1−1.33e3T+4.93e5T2 |
| 83 | 1−812.T+5.71e5T2 |
| 89 | 1+936.T+7.04e5T2 |
| 97 | 1+954.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.281070193100072734471404005118, −7.78710342068889981386247026438, −6.77124169218390644567232598628, −6.42864839786140833994736941152, −5.16319157197850804973390641030, −3.99440462185048265865660132166, −3.55414415699425161581413133450, −2.78038519231245257871463135579, −0.884414296797356043782937990923, 0,
0.884414296797356043782937990923, 2.78038519231245257871463135579, 3.55414415699425161581413133450, 3.99440462185048265865660132166, 5.16319157197850804973390641030, 6.42864839786140833994736941152, 6.77124169218390644567232598628, 7.78710342068889981386247026438, 8.281070193100072734471404005118