Properties

Label 2-1872-1.1-c3-0-49
Degree $2$
Conductor $1872$
Sign $1$
Analytic cond. $110.451$
Root an. cond. $10.5095$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 20.1·5-s + 19.6·7-s + 13.5·11-s + 13·13-s − 116.·17-s − 68.1·19-s + 122.·23-s + 280.·25-s − 204.·29-s + 194.·31-s + 396.·35-s − 142.·37-s + 175.·41-s + 219.·43-s + 236.·47-s + 45.0·49-s + 628.·53-s + 273.·55-s + 446.·59-s + 224.·61-s + 261.·65-s − 165.·67-s + 902.·71-s − 15.1·73-s + 266.·77-s − 670.·79-s + 1.04e3·83-s + ⋯
L(s)  = 1  + 1.80·5-s + 1.06·7-s + 0.371·11-s + 0.277·13-s − 1.66·17-s − 0.822·19-s + 1.10·23-s + 2.24·25-s − 1.30·29-s + 1.12·31-s + 1.91·35-s − 0.634·37-s + 0.666·41-s + 0.778·43-s + 0.733·47-s + 0.131·49-s + 1.62·53-s + 0.669·55-s + 0.984·59-s + 0.471·61-s + 0.499·65-s − 0.301·67-s + 1.50·71-s − 0.0242·73-s + 0.395·77-s − 0.954·79-s + 1.37·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(110.451\)
Root analytic conductor: \(10.5095\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.971221979\)
\(L(\frac12)\) \(\approx\) \(3.971221979\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - 13T \)
good5 \( 1 - 20.1T + 125T^{2} \)
7 \( 1 - 19.6T + 343T^{2} \)
11 \( 1 - 13.5T + 1.33e3T^{2} \)
17 \( 1 + 116.T + 4.91e3T^{2} \)
19 \( 1 + 68.1T + 6.85e3T^{2} \)
23 \( 1 - 122.T + 1.21e4T^{2} \)
29 \( 1 + 204.T + 2.43e4T^{2} \)
31 \( 1 - 194.T + 2.97e4T^{2} \)
37 \( 1 + 142.T + 5.06e4T^{2} \)
41 \( 1 - 175.T + 6.89e4T^{2} \)
43 \( 1 - 219.T + 7.95e4T^{2} \)
47 \( 1 - 236.T + 1.03e5T^{2} \)
53 \( 1 - 628.T + 1.48e5T^{2} \)
59 \( 1 - 446.T + 2.05e5T^{2} \)
61 \( 1 - 224.T + 2.26e5T^{2} \)
67 \( 1 + 165.T + 3.00e5T^{2} \)
71 \( 1 - 902.T + 3.57e5T^{2} \)
73 \( 1 + 15.1T + 3.89e5T^{2} \)
79 \( 1 + 670.T + 4.93e5T^{2} \)
83 \( 1 - 1.04e3T + 5.71e5T^{2} \)
89 \( 1 - 562.T + 7.04e5T^{2} \)
97 \( 1 - 1.64e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.979612251648556713387301904354, −8.342495738358660732962068077466, −7.07314262565942452783780317368, −6.46761007700977991576663712401, −5.64407989849702682027840272393, −4.93482364942701458627533193608, −4.07033430036915002789681059487, −2.48043625507977346678838467219, −1.98055245855744336167724019081, −0.979320264978208541398548136926, 0.979320264978208541398548136926, 1.98055245855744336167724019081, 2.48043625507977346678838467219, 4.07033430036915002789681059487, 4.93482364942701458627533193608, 5.64407989849702682027840272393, 6.46761007700977991576663712401, 7.07314262565942452783780317368, 8.342495738358660732962068077466, 8.979612251648556713387301904354

Graph of the $Z$-function along the critical line