L(s) = 1 | + (0.5 + 0.866i)3-s + (1.36 − 0.366i)7-s + (−0.499 + 0.866i)9-s + (1.36 − 0.366i)11-s + (−0.866 + 0.5i)13-s − i·17-s + (1 − i)19-s + (1 + 0.999i)21-s + (−0.866 + 0.5i)23-s + (−0.866 − 0.5i)25-s − 0.999·27-s + (1 + 0.999i)33-s + (1 + i)37-s + (−0.866 − 0.499i)39-s + (−1.36 − 0.366i)41-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)3-s + (1.36 − 0.366i)7-s + (−0.499 + 0.866i)9-s + (1.36 − 0.366i)11-s + (−0.866 + 0.5i)13-s − i·17-s + (1 − i)19-s + (1 + 0.999i)21-s + (−0.866 + 0.5i)23-s + (−0.866 − 0.5i)25-s − 0.999·27-s + (1 + 0.999i)33-s + (1 + i)37-s + (−0.866 − 0.499i)39-s + (−1.36 − 0.366i)41-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)(0.800−0.599i)Λ(1−s)
Λ(s)=(=(1872s/2ΓC(s)L(s)(0.800−0.599i)Λ(1−s)
Degree: |
2 |
Conductor: |
1872
= 24⋅32⋅13
|
Sign: |
0.800−0.599i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1872(1825,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1872, ( :0), 0.800−0.599i)
|
Particular Values
L(21) |
≈ |
1.581314950 |
L(21) |
≈ |
1.581314950 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(−0.5−0.866i)T |
| 13 | 1+(0.866−0.5i)T |
good | 5 | 1+(0.866+0.5i)T2 |
| 7 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 11 | 1+(−1.36+0.366i)T+(0.866−0.5i)T2 |
| 17 | 1+iT−T2 |
| 19 | 1+(−1+i)T−iT2 |
| 23 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 29 | 1+(−0.5−0.866i)T2 |
| 31 | 1+(0.866+0.5i)T2 |
| 37 | 1+(−1−i)T+iT2 |
| 41 | 1+(1.36+0.366i)T+(0.866+0.5i)T2 |
| 43 | 1+(−0.866−0.5i)T+(0.5+0.866i)T2 |
| 47 | 1+(1.36−0.366i)T+(0.866−0.5i)T2 |
| 53 | 1+T+T2 |
| 59 | 1+(−0.866−0.5i)T2 |
| 61 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 67 | 1+(0.866+0.5i)T2 |
| 71 | 1−iT2 |
| 73 | 1+iT2 |
| 79 | 1+(−0.5+0.866i)T+(−0.5−0.866i)T2 |
| 83 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 89 | 1+(1+i)T+iT2 |
| 97 | 1+(−0.866+0.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.537180488329848088998119403018, −8.845724661098549185477509225712, −7.938212589205832580112158427807, −7.41184528901657582291063166299, −6.31281513578766730257923791513, −5.07938026219760773772115606422, −4.63634961670779148986093213389, −3.80963058761701487157235716757, −2.70618525650891556390506239541, −1.52421086606574597006503406665,
1.50667707705467885057641092283, 2.02776429859673837017409988876, 3.42482540758769838936075216008, 4.31482436325630064132513742793, 5.45644137040267498218810802556, 6.18076058543716551068180160290, 7.14061249417357075701763428943, 8.026477024728232844472920215938, 8.169956766363443626170422291972, 9.308089923509075376140031930325