L(s) = 1 | + (0.5 + 0.866i)3-s + (1.36 − 0.366i)7-s + (−0.499 + 0.866i)9-s + (1.36 − 0.366i)11-s + (−0.866 + 0.5i)13-s − i·17-s + (1 − i)19-s + (1 + 0.999i)21-s + (−0.866 + 0.5i)23-s + (−0.866 − 0.5i)25-s − 0.999·27-s + (1 + 0.999i)33-s + (1 + i)37-s + (−0.866 − 0.499i)39-s + (−1.36 − 0.366i)41-s + ⋯ |
L(s) = 1 | + (0.5 + 0.866i)3-s + (1.36 − 0.366i)7-s + (−0.499 + 0.866i)9-s + (1.36 − 0.366i)11-s + (−0.866 + 0.5i)13-s − i·17-s + (1 − i)19-s + (1 + 0.999i)21-s + (−0.866 + 0.5i)23-s + (−0.866 − 0.5i)25-s − 0.999·27-s + (1 + 0.999i)33-s + (1 + i)37-s + (−0.866 − 0.499i)39-s + (−1.36 − 0.366i)41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.800 - 0.599i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.800 - 0.599i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.581314950\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.581314950\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 + (0.866 - 0.5i)T \) |
good | 5 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 7 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 11 | \( 1 + (-1.36 + 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 17 | \( 1 + iT - T^{2} \) |
| 19 | \( 1 + (-1 + i)T - iT^{2} \) |
| 23 | \( 1 + (0.866 - 0.5i)T + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 31 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 37 | \( 1 + (-1 - i)T + iT^{2} \) |
| 41 | \( 1 + (1.36 + 0.366i)T + (0.866 + 0.5i)T^{2} \) |
| 43 | \( 1 + (-0.866 - 0.5i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + (1.36 - 0.366i)T + (0.866 - 0.5i)T^{2} \) |
| 53 | \( 1 + T + T^{2} \) |
| 59 | \( 1 + (-0.866 - 0.5i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (0.866 + 0.5i)T^{2} \) |
| 71 | \( 1 - iT^{2} \) |
| 73 | \( 1 + iT^{2} \) |
| 79 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 83 | \( 1 + (-0.366 - 1.36i)T + (-0.866 + 0.5i)T^{2} \) |
| 89 | \( 1 + (1 + i)T + iT^{2} \) |
| 97 | \( 1 + (-0.866 + 0.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.537180488329848088998119403018, −8.845724661098549185477509225712, −7.938212589205832580112158427807, −7.41184528901657582291063166299, −6.31281513578766730257923791513, −5.07938026219760773772115606422, −4.63634961670779148986093213389, −3.80963058761701487157235716757, −2.70618525650891556390506239541, −1.52421086606574597006503406665,
1.50667707705467885057641092283, 2.02776429859673837017409988876, 3.42482540758769838936075216008, 4.31482436325630064132513742793, 5.45644137040267498218810802556, 6.18076058543716551068180160290, 7.14061249417357075701763428943, 8.026477024728232844472920215938, 8.169956766363443626170422291972, 9.308089923509075376140031930325