Properties

Label 2-1872-12.11-c1-0-1
Degree $2$
Conductor $1872$
Sign $-0.577 - 0.816i$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.82i·5-s − 4.47i·7-s − 3.16·11-s + 13-s + 4.24i·17-s − 6.32·23-s − 3.00·25-s + 4.24i·29-s + 8.94i·31-s + 12.6·35-s + 2·37-s + 5.65i·41-s − 3.16·47-s − 13.0·49-s + 1.41i·53-s + ⋯
L(s)  = 1  + 1.26i·5-s − 1.69i·7-s − 0.953·11-s + 0.277·13-s + 1.02i·17-s − 1.31·23-s − 0.600·25-s + 0.787i·29-s + 1.60i·31-s + 2.13·35-s + 0.328·37-s + 0.883i·41-s − 0.461·47-s − 1.85·49-s + 0.194i·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.577 - 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-0.577 - 0.816i$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1872} (287, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ -0.577 - 0.816i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8656557049\)
\(L(\frac12)\) \(\approx\) \(0.8656557049\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 - 2.82iT - 5T^{2} \)
7 \( 1 + 4.47iT - 7T^{2} \)
11 \( 1 + 3.16T + 11T^{2} \)
17 \( 1 - 4.24iT - 17T^{2} \)
19 \( 1 - 19T^{2} \)
23 \( 1 + 6.32T + 23T^{2} \)
29 \( 1 - 4.24iT - 29T^{2} \)
31 \( 1 - 8.94iT - 31T^{2} \)
37 \( 1 - 2T + 37T^{2} \)
41 \( 1 - 5.65iT - 41T^{2} \)
43 \( 1 - 43T^{2} \)
47 \( 1 + 3.16T + 47T^{2} \)
53 \( 1 - 1.41iT - 53T^{2} \)
59 \( 1 - 9.48T + 59T^{2} \)
61 \( 1 + 61T^{2} \)
67 \( 1 - 13.4iT - 67T^{2} \)
71 \( 1 + 3.16T + 71T^{2} \)
73 \( 1 + 14T + 73T^{2} \)
79 \( 1 - 8.94iT - 79T^{2} \)
83 \( 1 - 9.48T + 83T^{2} \)
89 \( 1 - 2.82iT - 89T^{2} \)
97 \( 1 + 18T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.936651961988033128030713982370, −8.481666891003482499953707529791, −7.83851007643207570299332665499, −7.06113277618002610538512092200, −6.58955639936696525440695488995, −5.58820563798723813071711235157, −4.38398970681063026525777202800, −3.63571377473198697800959887505, −2.81488563558976188699598000071, −1.43450590244404833217221603212, 0.30996800475777155817225770121, 1.97581970291656523060122757789, 2.72056743274735132346944523314, 4.12807958517192733587481209025, 5.09388962172029747667625941558, 5.56991153247823128985983279338, 6.30033337066023907094524305789, 7.76206671171728769941322740395, 8.181486175587602737855594118704, 9.043864151284050173457565585994

Graph of the $Z$-function along the critical line