L(s) = 1 | − 1.41i·5-s + 0.504i·7-s − 3.16·11-s + 13-s + 5.47i·17-s − 8.44i·19-s + 0.712·23-s + 2.99·25-s − 4.24i·29-s − 2.96i·31-s + 0.712·35-s − 5.74·37-s − 9.54i·41-s − 3.46i·43-s − 12.9·47-s + ⋯ |
L(s) = 1 | − 0.632i·5-s + 0.190i·7-s − 0.953·11-s + 0.277·13-s + 1.32i·17-s − 1.93i·19-s + 0.148·23-s + 0.599·25-s − 0.787i·29-s − 0.531i·31-s + 0.120·35-s − 0.944·37-s − 1.48i·41-s − 0.528i·43-s − 1.89·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.081088342\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.081088342\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 5 | \( 1 + 1.41iT - 5T^{2} \) |
| 7 | \( 1 - 0.504iT - 7T^{2} \) |
| 11 | \( 1 + 3.16T + 11T^{2} \) |
| 17 | \( 1 - 5.47iT - 17T^{2} \) |
| 19 | \( 1 + 8.44iT - 19T^{2} \) |
| 23 | \( 1 - 0.712T + 23T^{2} \) |
| 29 | \( 1 + 4.24iT - 29T^{2} \) |
| 31 | \( 1 + 2.96iT - 31T^{2} \) |
| 37 | \( 1 + 5.74T + 37T^{2} \) |
| 41 | \( 1 + 9.54iT - 41T^{2} \) |
| 43 | \( 1 + 3.46iT - 43T^{2} \) |
| 47 | \( 1 + 12.9T + 47T^{2} \) |
| 53 | \( 1 + 8.30iT - 53T^{2} \) |
| 59 | \( 1 + 7.34T + 59T^{2} \) |
| 61 | \( 1 - 7.74T + 61T^{2} \) |
| 67 | \( 1 - 4.97iT - 67T^{2} \) |
| 71 | \( 1 + 1.02T + 71T^{2} \) |
| 73 | \( 1 + 9.74T + 73T^{2} \) |
| 79 | \( 1 + 7.93iT - 79T^{2} \) |
| 83 | \( 1 + 7.34T + 83T^{2} \) |
| 89 | \( 1 - 9.54iT - 89T^{2} \) |
| 97 | \( 1 + 1.74T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.709037339052520537815242663314, −8.494231537180586699436114327336, −7.42779855253820524501948181148, −6.62686647037929914847803560343, −5.61975364682484081873438670682, −4.97669214695906394163000787648, −4.08668614249884787066353327614, −2.93417566780936980139582401814, −1.88959518926525598102624764829, −0.39586876152838468491542788581,
1.42430272825997964298113751405, 2.80011271893989306240606000665, 3.41440422449919638771454757484, 4.66516137410667902768469309259, 5.43936860763251445759935024676, 6.36936759803655462531520299787, 7.16663300389046745624264358855, 7.85054463799691191775073413400, 8.604223775571914117814651664216, 9.619483488354640315752156638497