Properties

Label 2-1872-12.11-c1-0-18
Degree $2$
Conductor $1872$
Sign $-0.418 + 0.908i$
Analytic cond. $14.9479$
Root an. cond. $3.86626$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.41i·5-s + 0.504i·7-s − 3.16·11-s + 13-s + 5.47i·17-s − 8.44i·19-s + 0.712·23-s + 2.99·25-s − 4.24i·29-s − 2.96i·31-s + 0.712·35-s − 5.74·37-s − 9.54i·41-s − 3.46i·43-s − 12.9·47-s + ⋯
L(s)  = 1  − 0.632i·5-s + 0.190i·7-s − 0.953·11-s + 0.277·13-s + 1.32i·17-s − 1.93i·19-s + 0.148·23-s + 0.599·25-s − 0.787i·29-s − 0.531i·31-s + 0.120·35-s − 0.944·37-s − 1.48i·41-s − 0.528i·43-s − 1.89·47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.418 + 0.908i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1872\)    =    \(2^{4} \cdot 3^{2} \cdot 13\)
Sign: $-0.418 + 0.908i$
Analytic conductor: \(14.9479\)
Root analytic conductor: \(3.86626\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1872} (287, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1872,\ (\ :1/2),\ -0.418 + 0.908i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.081088342\)
\(L(\frac12)\) \(\approx\) \(1.081088342\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
13 \( 1 - T \)
good5 \( 1 + 1.41iT - 5T^{2} \)
7 \( 1 - 0.504iT - 7T^{2} \)
11 \( 1 + 3.16T + 11T^{2} \)
17 \( 1 - 5.47iT - 17T^{2} \)
19 \( 1 + 8.44iT - 19T^{2} \)
23 \( 1 - 0.712T + 23T^{2} \)
29 \( 1 + 4.24iT - 29T^{2} \)
31 \( 1 + 2.96iT - 31T^{2} \)
37 \( 1 + 5.74T + 37T^{2} \)
41 \( 1 + 9.54iT - 41T^{2} \)
43 \( 1 + 3.46iT - 43T^{2} \)
47 \( 1 + 12.9T + 47T^{2} \)
53 \( 1 + 8.30iT - 53T^{2} \)
59 \( 1 + 7.34T + 59T^{2} \)
61 \( 1 - 7.74T + 61T^{2} \)
67 \( 1 - 4.97iT - 67T^{2} \)
71 \( 1 + 1.02T + 71T^{2} \)
73 \( 1 + 9.74T + 73T^{2} \)
79 \( 1 + 7.93iT - 79T^{2} \)
83 \( 1 + 7.34T + 83T^{2} \)
89 \( 1 - 9.54iT - 89T^{2} \)
97 \( 1 + 1.74T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.709037339052520537815242663314, −8.494231537180586699436114327336, −7.42779855253820524501948181148, −6.62686647037929914847803560343, −5.61975364682484081873438670682, −4.97669214695906394163000787648, −4.08668614249884787066353327614, −2.93417566780936980139582401814, −1.88959518926525598102624764829, −0.39586876152838468491542788581, 1.42430272825997964298113751405, 2.80011271893989306240606000665, 3.41440422449919638771454757484, 4.66516137410667902768469309259, 5.43936860763251445759935024676, 6.36936759803655462531520299787, 7.16663300389046745624264358855, 7.85054463799691191775073413400, 8.604223775571914117814651664216, 9.619483488354640315752156638497

Graph of the $Z$-function along the critical line