L(s) = 1 | − 1.41i·5-s + 0.504i·7-s − 3.16·11-s + 13-s + 5.47i·17-s − 8.44i·19-s + 0.712·23-s + 2.99·25-s − 4.24i·29-s − 2.96i·31-s + 0.712·35-s − 5.74·37-s − 9.54i·41-s − 3.46i·43-s − 12.9·47-s + ⋯ |
L(s) = 1 | − 0.632i·5-s + 0.190i·7-s − 0.953·11-s + 0.277·13-s + 1.32i·17-s − 1.93i·19-s + 0.148·23-s + 0.599·25-s − 0.787i·29-s − 0.531i·31-s + 0.120·35-s − 0.944·37-s − 1.48i·41-s − 0.528i·43-s − 1.89·47-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)(−0.418+0.908i)Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)(−0.418+0.908i)Λ(1−s)
Degree: |
2 |
Conductor: |
1872
= 24⋅32⋅13
|
Sign: |
−0.418+0.908i
|
Analytic conductor: |
14.9479 |
Root analytic conductor: |
3.86626 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1872(287,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1872, ( :1/2), −0.418+0.908i)
|
Particular Values
L(1) |
≈ |
1.081088342 |
L(21) |
≈ |
1.081088342 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1−T |
good | 5 | 1+1.41iT−5T2 |
| 7 | 1−0.504iT−7T2 |
| 11 | 1+3.16T+11T2 |
| 17 | 1−5.47iT−17T2 |
| 19 | 1+8.44iT−19T2 |
| 23 | 1−0.712T+23T2 |
| 29 | 1+4.24iT−29T2 |
| 31 | 1+2.96iT−31T2 |
| 37 | 1+5.74T+37T2 |
| 41 | 1+9.54iT−41T2 |
| 43 | 1+3.46iT−43T2 |
| 47 | 1+12.9T+47T2 |
| 53 | 1+8.30iT−53T2 |
| 59 | 1+7.34T+59T2 |
| 61 | 1−7.74T+61T2 |
| 67 | 1−4.97iT−67T2 |
| 71 | 1+1.02T+71T2 |
| 73 | 1+9.74T+73T2 |
| 79 | 1+7.93iT−79T2 |
| 83 | 1+7.34T+83T2 |
| 89 | 1−9.54iT−89T2 |
| 97 | 1+1.74T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.709037339052520537815242663314, −8.494231537180586699436114327336, −7.42779855253820524501948181148, −6.62686647037929914847803560343, −5.61975364682484081873438670682, −4.97669214695906394163000787648, −4.08668614249884787066353327614, −2.93417566780936980139582401814, −1.88959518926525598102624764829, −0.39586876152838468491542788581,
1.42430272825997964298113751405, 2.80011271893989306240606000665, 3.41440422449919638771454757484, 4.66516137410667902768469309259, 5.43936860763251445759935024676, 6.36936759803655462531520299787, 7.16663300389046745624264358855, 7.85054463799691191775073413400, 8.604223775571914117814651664216, 9.619483488354640315752156638497