L(s) = 1 | − 2.82i·5-s − 4.47i·7-s + 3.16·11-s + 13-s − 4.24i·17-s + 6.32·23-s − 3.00·25-s − 4.24i·29-s + 8.94i·31-s − 12.6·35-s + 2·37-s − 5.65i·41-s + 3.16·47-s − 13.0·49-s − 1.41i·53-s + ⋯ |
L(s) = 1 | − 1.26i·5-s − 1.69i·7-s + 0.953·11-s + 0.277·13-s − 1.02i·17-s + 1.31·23-s − 0.600·25-s − 0.787i·29-s + 1.60i·31-s − 2.13·35-s + 0.328·37-s − 0.883i·41-s + 0.461·47-s − 1.85·49-s − 0.194i·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.577 + 0.816i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.796514912\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.796514912\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 - T \) |
good | 5 | \( 1 + 2.82iT - 5T^{2} \) |
| 7 | \( 1 + 4.47iT - 7T^{2} \) |
| 11 | \( 1 - 3.16T + 11T^{2} \) |
| 17 | \( 1 + 4.24iT - 17T^{2} \) |
| 19 | \( 1 - 19T^{2} \) |
| 23 | \( 1 - 6.32T + 23T^{2} \) |
| 29 | \( 1 + 4.24iT - 29T^{2} \) |
| 31 | \( 1 - 8.94iT - 31T^{2} \) |
| 37 | \( 1 - 2T + 37T^{2} \) |
| 41 | \( 1 + 5.65iT - 41T^{2} \) |
| 43 | \( 1 - 43T^{2} \) |
| 47 | \( 1 - 3.16T + 47T^{2} \) |
| 53 | \( 1 + 1.41iT - 53T^{2} \) |
| 59 | \( 1 + 9.48T + 59T^{2} \) |
| 61 | \( 1 + 61T^{2} \) |
| 67 | \( 1 - 13.4iT - 67T^{2} \) |
| 71 | \( 1 - 3.16T + 71T^{2} \) |
| 73 | \( 1 + 14T + 73T^{2} \) |
| 79 | \( 1 - 8.94iT - 79T^{2} \) |
| 83 | \( 1 + 9.48T + 83T^{2} \) |
| 89 | \( 1 + 2.82iT - 89T^{2} \) |
| 97 | \( 1 + 18T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.981513731593431123946396025003, −8.289465865685278602872873360175, −7.20312557556676882584703321066, −6.88053088984741477541700221424, −5.60827635027446955822564309875, −4.65837248489534732257726539707, −4.19178527797832428892309684761, −3.15870961881517777360578418214, −1.37208718953770828152417518222, −0.73893290627576563547112468838,
1.68842686424134164104966812611, 2.73065087346783331735260639501, 3.40666857042304315161270119194, 4.59035518778482000454234126683, 5.82478826561256160625582733371, 6.20776938673303346206010929869, 7.00277152457657592398163428887, 7.974548749807303477143611395277, 8.879896261903372271039386148429, 9.320851455203705509869657403938