L(s) = 1 | − 2.82i·5-s − 4.47i·7-s + 3.16·11-s + 13-s − 4.24i·17-s + 6.32·23-s − 3.00·25-s − 4.24i·29-s + 8.94i·31-s − 12.6·35-s + 2·37-s − 5.65i·41-s + 3.16·47-s − 13.0·49-s − 1.41i·53-s + ⋯ |
L(s) = 1 | − 1.26i·5-s − 1.69i·7-s + 0.953·11-s + 0.277·13-s − 1.02i·17-s + 1.31·23-s − 0.600·25-s − 0.787i·29-s + 1.60i·31-s − 2.13·35-s + 0.328·37-s − 0.883i·41-s + 0.461·47-s − 1.85·49-s − 0.194i·53-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)(−0.577+0.816i)Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)(−0.577+0.816i)Λ(1−s)
Degree: |
2 |
Conductor: |
1872
= 24⋅32⋅13
|
Sign: |
−0.577+0.816i
|
Analytic conductor: |
14.9479 |
Root analytic conductor: |
3.86626 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1872(287,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1872, ( :1/2), −0.577+0.816i)
|
Particular Values
L(1) |
≈ |
1.796514912 |
L(21) |
≈ |
1.796514912 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1−T |
good | 5 | 1+2.82iT−5T2 |
| 7 | 1+4.47iT−7T2 |
| 11 | 1−3.16T+11T2 |
| 17 | 1+4.24iT−17T2 |
| 19 | 1−19T2 |
| 23 | 1−6.32T+23T2 |
| 29 | 1+4.24iT−29T2 |
| 31 | 1−8.94iT−31T2 |
| 37 | 1−2T+37T2 |
| 41 | 1+5.65iT−41T2 |
| 43 | 1−43T2 |
| 47 | 1−3.16T+47T2 |
| 53 | 1+1.41iT−53T2 |
| 59 | 1+9.48T+59T2 |
| 61 | 1+61T2 |
| 67 | 1−13.4iT−67T2 |
| 71 | 1−3.16T+71T2 |
| 73 | 1+14T+73T2 |
| 79 | 1−8.94iT−79T2 |
| 83 | 1+9.48T+83T2 |
| 89 | 1+2.82iT−89T2 |
| 97 | 1+18T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.981513731593431123946396025003, −8.289465865685278602872873360175, −7.20312557556676882584703321066, −6.88053088984741477541700221424, −5.60827635027446955822564309875, −4.65837248489534732257726539707, −4.19178527797832428892309684761, −3.15870961881517777360578418214, −1.37208718953770828152417518222, −0.73893290627576563547112468838,
1.68842686424134164104966812611, 2.73065087346783331735260639501, 3.40666857042304315161270119194, 4.59035518778482000454234126683, 5.82478826561256160625582733371, 6.20776938673303346206010929869, 7.00277152457657592398163428887, 7.974548749807303477143611395277, 8.879896261903372271039386148429, 9.320851455203705509869657403938