L(s) = 1 | − 1.73i·5-s + (−2.5 + 2.59i)13-s + (−1.5 + 2.59i)17-s + (3 + 1.73i)19-s + (3 + 5.19i)23-s + 2.00·25-s + (1.5 + 2.59i)29-s + 3.46i·31-s + (7.5 − 4.33i)37-s + (4.5 − 2.59i)41-s + (4 − 6.92i)43-s + 3.46i·47-s + (−3.5 − 6.06i)49-s + 3·53-s + (6 + 3.46i)59-s + ⋯ |
L(s) = 1 | − 0.774i·5-s + (−0.693 + 0.720i)13-s + (−0.363 + 0.630i)17-s + (0.688 + 0.397i)19-s + (0.625 + 1.08i)23-s + 0.400·25-s + (0.278 + 0.482i)29-s + 0.622i·31-s + (1.23 − 0.711i)37-s + (0.702 − 0.405i)41-s + (0.609 − 1.05i)43-s + 0.505i·47-s + (−0.5 − 0.866i)49-s + 0.412·53-s + (0.781 + 0.450i)59-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.649925025\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.649925025\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (2.5 - 2.59i)T \) |
good | 5 | \( 1 + 1.73iT - 5T^{2} \) |
| 7 | \( 1 + (3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (1.5 - 2.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-3 - 1.73i)T + (9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 - 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 3.46iT - 31T^{2} \) |
| 37 | \( 1 + (-7.5 + 4.33i)T + (18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-4.5 + 2.59i)T + (20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-4 + 6.92i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 3.46iT - 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (-6 - 3.46i)T + (29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3 - 1.73i)T + (33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 - 1.73i)T + (35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 + 1.73iT - 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 + 13.8iT - 83T^{2} \) |
| 89 | \( 1 + (-6 + 3.46i)T + (44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-6 - 3.46i)T + (48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.123077605873459863605724253906, −8.697988548714246519582033478004, −7.61857570742759708878695674415, −7.04737512891881071243488383493, −5.96159616064971977788446866911, −5.16666675086398900658768968531, −4.41897364129475346952967322849, −3.45064800798618838084577413872, −2.18501010135135955767249891651, −1.04391732407829540658714043117,
0.75508942227275846024388682668, 2.58162833387306437816196125022, 2.94410895101607160802272327130, 4.33594373541198768671724370219, 5.07917652869731294007720257944, 6.12922487867576987838812897419, 6.85481181379165610606297371129, 7.57821239145530444057098171169, 8.299138643179058367045747390571, 9.393889983743260479636102295743