Properties

Label 2-1872-13.10-c1-0-11
Degree 22
Conductor 18721872
Sign 0.9640.265i0.964 - 0.265i
Analytic cond. 14.947914.9479
Root an. cond. 3.866263.86626
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 1.73i·5-s + (−2.5 + 2.59i)13-s + (−1.5 + 2.59i)17-s + (3 + 1.73i)19-s + (3 + 5.19i)23-s + 2.00·25-s + (1.5 + 2.59i)29-s + 3.46i·31-s + (7.5 − 4.33i)37-s + (4.5 − 2.59i)41-s + (4 − 6.92i)43-s + 3.46i·47-s + (−3.5 − 6.06i)49-s + 3·53-s + (6 + 3.46i)59-s + ⋯
L(s)  = 1  − 0.774i·5-s + (−0.693 + 0.720i)13-s + (−0.363 + 0.630i)17-s + (0.688 + 0.397i)19-s + (0.625 + 1.08i)23-s + 0.400·25-s + (0.278 + 0.482i)29-s + 0.622i·31-s + (1.23 − 0.711i)37-s + (0.702 − 0.405i)41-s + (0.609 − 1.05i)43-s + 0.505i·47-s + (−0.5 − 0.866i)49-s + 0.412·53-s + (0.781 + 0.450i)59-s + ⋯

Functional equation

Λ(s)=(1872s/2ΓC(s)L(s)=((0.9640.265i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(1872s/2ΓC(s+1/2)L(s)=((0.9640.265i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.964 - 0.265i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 18721872    =    2432132^{4} \cdot 3^{2} \cdot 13
Sign: 0.9640.265i0.964 - 0.265i
Analytic conductor: 14.947914.9479
Root analytic conductor: 3.866263.86626
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ1872(1297,)\chi_{1872} (1297, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 1872, ( :1/2), 0.9640.265i)(2,\ 1872,\ (\ :1/2),\ 0.964 - 0.265i)

Particular Values

L(1)L(1) \approx 1.6499250251.649925025
L(12)L(\frac12) \approx 1.6499250251.649925025
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad2 1 1
3 1 1
13 1+(2.52.59i)T 1 + (2.5 - 2.59i)T
good5 1+1.73iT5T2 1 + 1.73iT - 5T^{2}
7 1+(3.5+6.06i)T2 1 + (3.5 + 6.06i)T^{2}
11 1+(5.59.52i)T2 1 + (5.5 - 9.52i)T^{2}
17 1+(1.52.59i)T+(8.514.7i)T2 1 + (1.5 - 2.59i)T + (-8.5 - 14.7i)T^{2}
19 1+(31.73i)T+(9.5+16.4i)T2 1 + (-3 - 1.73i)T + (9.5 + 16.4i)T^{2}
23 1+(35.19i)T+(11.5+19.9i)T2 1 + (-3 - 5.19i)T + (-11.5 + 19.9i)T^{2}
29 1+(1.52.59i)T+(14.5+25.1i)T2 1 + (-1.5 - 2.59i)T + (-14.5 + 25.1i)T^{2}
31 13.46iT31T2 1 - 3.46iT - 31T^{2}
37 1+(7.5+4.33i)T+(18.532.0i)T2 1 + (-7.5 + 4.33i)T + (18.5 - 32.0i)T^{2}
41 1+(4.5+2.59i)T+(20.535.5i)T2 1 + (-4.5 + 2.59i)T + (20.5 - 35.5i)T^{2}
43 1+(4+6.92i)T+(21.537.2i)T2 1 + (-4 + 6.92i)T + (-21.5 - 37.2i)T^{2}
47 13.46iT47T2 1 - 3.46iT - 47T^{2}
53 13T+53T2 1 - 3T + 53T^{2}
59 1+(63.46i)T+(29.5+51.0i)T2 1 + (-6 - 3.46i)T + (29.5 + 51.0i)T^{2}
61 1+(0.50.866i)T+(30.552.8i)T2 1 + (0.5 - 0.866i)T + (-30.5 - 52.8i)T^{2}
67 1+(31.73i)T+(33.558.0i)T2 1 + (3 - 1.73i)T + (33.5 - 58.0i)T^{2}
71 1+(31.73i)T+(35.5+61.4i)T2 1 + (-3 - 1.73i)T + (35.5 + 61.4i)T^{2}
73 1+1.73iT73T2 1 + 1.73iT - 73T^{2}
79 1+4T+79T2 1 + 4T + 79T^{2}
83 1+13.8iT83T2 1 + 13.8iT - 83T^{2}
89 1+(6+3.46i)T+(44.577.0i)T2 1 + (-6 + 3.46i)T + (44.5 - 77.0i)T^{2}
97 1+(63.46i)T+(48.5+84.0i)T2 1 + (-6 - 3.46i)T + (48.5 + 84.0i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−9.123077605873459863605724253906, −8.697988548714246519582033478004, −7.61857570742759708878695674415, −7.04737512891881071243488383493, −5.96159616064971977788446866911, −5.16666675086398900658768968531, −4.41897364129475346952967322849, −3.45064800798618838084577413872, −2.18501010135135955767249891651, −1.04391732407829540658714043117, 0.75508942227275846024388682668, 2.58162833387306437816196125022, 2.94410895101607160802272327130, 4.33594373541198768671724370219, 5.07917652869731294007720257944, 6.12922487867576987838812897419, 6.85481181379165610606297371129, 7.57821239145530444057098171169, 8.299138643179058367045747390571, 9.393889983743260479636102295743

Graph of the ZZ-function along the critical line