L(s) = 1 | − 3.46i·5-s + (1.5 − 0.866i)7-s + (−3 − 1.73i)11-s + (3.5 − 0.866i)13-s + (−3 + 1.73i)19-s + (3 − 5.19i)23-s − 6.99·25-s + (3 − 5.19i)29-s − 1.73i·31-s + (−2.99 − 5.19i)35-s + (6 + 3.46i)41-s + (−0.5 − 0.866i)43-s + 3.46i·47-s + (−2 + 3.46i)49-s − 12·53-s + ⋯ |
L(s) = 1 | − 1.54i·5-s + (0.566 − 0.327i)7-s + (−0.904 − 0.522i)11-s + (0.970 − 0.240i)13-s + (−0.688 + 0.397i)19-s + (0.625 − 1.08i)23-s − 1.39·25-s + (0.557 − 0.964i)29-s − 0.311i·31-s + (−0.507 − 0.878i)35-s + (0.937 + 0.541i)41-s + (−0.0762 − 0.132i)43-s + 0.505i·47-s + (−0.285 + 0.494i)49-s − 1.64·53-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)(−0.711+0.702i)Λ(2−s)
Λ(s)=(=(1872s/2ΓC(s+1/2)L(s)(−0.711+0.702i)Λ(1−s)
Degree: |
2 |
Conductor: |
1872
= 24⋅32⋅13
|
Sign: |
−0.711+0.702i
|
Analytic conductor: |
14.9479 |
Root analytic conductor: |
3.86626 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1872(433,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1872, ( :1/2), −0.711+0.702i)
|
Particular Values
L(1) |
≈ |
1.487684791 |
L(21) |
≈ |
1.487684791 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
| 13 | 1+(−3.5+0.866i)T |
good | 5 | 1+3.46iT−5T2 |
| 7 | 1+(−1.5+0.866i)T+(3.5−6.06i)T2 |
| 11 | 1+(3+1.73i)T+(5.5+9.52i)T2 |
| 17 | 1+(−8.5+14.7i)T2 |
| 19 | 1+(3−1.73i)T+(9.5−16.4i)T2 |
| 23 | 1+(−3+5.19i)T+(−11.5−19.9i)T2 |
| 29 | 1+(−3+5.19i)T+(−14.5−25.1i)T2 |
| 31 | 1+1.73iT−31T2 |
| 37 | 1+(18.5+32.0i)T2 |
| 41 | 1+(−6−3.46i)T+(20.5+35.5i)T2 |
| 43 | 1+(0.5+0.866i)T+(−21.5+37.2i)T2 |
| 47 | 1−3.46iT−47T2 |
| 53 | 1+12T+53T2 |
| 59 | 1+(3−1.73i)T+(29.5−51.0i)T2 |
| 61 | 1+(0.5+0.866i)T+(−30.5+52.8i)T2 |
| 67 | 1+(7.5+4.33i)T+(33.5+58.0i)T2 |
| 71 | 1+(9−5.19i)T+(35.5−61.4i)T2 |
| 73 | 1−1.73iT−73T2 |
| 79 | 1−11T+79T2 |
| 83 | 1+13.8iT−83T2 |
| 89 | 1+(6+3.46i)T+(44.5+77.0i)T2 |
| 97 | 1+(4.5−2.59i)T+(48.5−84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−8.761769351219909915723949317334, −8.185671717299670862931690995473, −7.77246511181238394803567399300, −6.32696931124475418608866006642, −5.68227205182762207979301500021, −4.69179727652537013997358929311, −4.28323666195234539858464983190, −2.91854700757476451901906785866, −1.55261980507020798552462442305, −0.55217117108562369530930829237,
1.71402981877806298870744535869, 2.72693299224450383401279500980, 3.48490803466939314477923148091, 4.65716645406775715395121822368, 5.57727699753901817016429502406, 6.48037458057486404128717187484, 7.12709110255618987692534609081, 7.85368742182022637492133138713, 8.692700063809163301382088294009, 9.575998133364500977744244022024