L(s) = 1 | − 3.46i·5-s + (1.5 − 0.866i)7-s + (−3 − 1.73i)11-s + (3.5 − 0.866i)13-s + (−3 + 1.73i)19-s + (3 − 5.19i)23-s − 6.99·25-s + (3 − 5.19i)29-s − 1.73i·31-s + (−2.99 − 5.19i)35-s + (6 + 3.46i)41-s + (−0.5 − 0.866i)43-s + 3.46i·47-s + (−2 + 3.46i)49-s − 12·53-s + ⋯ |
L(s) = 1 | − 1.54i·5-s + (0.566 − 0.327i)7-s + (−0.904 − 0.522i)11-s + (0.970 − 0.240i)13-s + (−0.688 + 0.397i)19-s + (0.625 − 1.08i)23-s − 1.39·25-s + (0.557 − 0.964i)29-s − 0.311i·31-s + (−0.507 − 0.878i)35-s + (0.937 + 0.541i)41-s + (−0.0762 − 0.132i)43-s + 0.505i·47-s + (−0.285 + 0.494i)49-s − 1.64·53-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.711 + 0.702i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.711 + 0.702i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.487684791\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.487684791\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-3.5 + 0.866i)T \) |
good | 5 | \( 1 + 3.46iT - 5T^{2} \) |
| 7 | \( 1 + (-1.5 + 0.866i)T + (3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (3 + 1.73i)T + (5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3 - 1.73i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-3 + 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (-3 + 5.19i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 + 1.73iT - 31T^{2} \) |
| 37 | \( 1 + (18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (-6 - 3.46i)T + (20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (0.5 + 0.866i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 3.46iT - 47T^{2} \) |
| 53 | \( 1 + 12T + 53T^{2} \) |
| 59 | \( 1 + (3 - 1.73i)T + (29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (0.5 + 0.866i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (7.5 + 4.33i)T + (33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (9 - 5.19i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 1.73iT - 73T^{2} \) |
| 79 | \( 1 - 11T + 79T^{2} \) |
| 83 | \( 1 + 13.8iT - 83T^{2} \) |
| 89 | \( 1 + (6 + 3.46i)T + (44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (4.5 - 2.59i)T + (48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−8.761769351219909915723949317334, −8.185671717299670862931690995473, −7.77246511181238394803567399300, −6.32696931124475418608866006642, −5.68227205182762207979301500021, −4.69179727652537013997358929311, −4.28323666195234539858464983190, −2.91854700757476451901906785866, −1.55261980507020798552462442305, −0.55217117108562369530930829237,
1.71402981877806298870744535869, 2.72693299224450383401279500980, 3.48490803466939314477923148091, 4.65716645406775715395121822368, 5.57727699753901817016429502406, 6.48037458057486404128717187484, 7.12709110255618987692534609081, 7.85368742182022637492133138713, 8.692700063809163301382088294009, 9.575998133364500977744244022024