L(s) = 1 | + (0.923 − 0.382i)2-s + (0.707 − 0.707i)4-s + (0.541 + 0.541i)5-s + (0.382 − 0.923i)8-s + (0.707 + 0.292i)10-s + (−0.541 + 0.541i)11-s + (0.707 + 0.707i)13-s − i·16-s + 0.765·20-s + (−0.292 + 0.707i)22-s − 0.414i·25-s + (0.923 + 0.382i)26-s + (−0.382 − 0.923i)32-s + (0.707 − 0.292i)40-s − 0.765·41-s + ⋯ |
L(s) = 1 | + (0.923 − 0.382i)2-s + (0.707 − 0.707i)4-s + (0.541 + 0.541i)5-s + (0.382 − 0.923i)8-s + (0.707 + 0.292i)10-s + (−0.541 + 0.541i)11-s + (0.707 + 0.707i)13-s − i·16-s + 0.765·20-s + (−0.292 + 0.707i)22-s − 0.414i·25-s + (0.923 + 0.382i)26-s + (−0.382 − 0.923i)32-s + (0.707 − 0.292i)40-s − 0.765·41-s + ⋯ |
Λ(s)=(=(1872s/2ΓC(s)L(s)(0.923+0.382i)Λ(1−s)
Λ(s)=(=(1872s/2ΓC(s)L(s)(0.923+0.382i)Λ(1−s)
Degree: |
2 |
Conductor: |
1872
= 24⋅32⋅13
|
Sign: |
0.923+0.382i
|
Analytic conductor: |
0.934249 |
Root analytic conductor: |
0.966565 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1872(883,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1872, ( :0), 0.923+0.382i)
|
Particular Values
L(21) |
≈ |
2.177816748 |
L(21) |
≈ |
2.177816748 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−0.923+0.382i)T |
| 3 | 1 |
| 13 | 1+(−0.707−0.707i)T |
good | 5 | 1+(−0.541−0.541i)T+iT2 |
| 7 | 1−T2 |
| 11 | 1+(0.541−0.541i)T−iT2 |
| 17 | 1+T2 |
| 19 | 1+iT2 |
| 23 | 1+T2 |
| 29 | 1+iT2 |
| 31 | 1+T2 |
| 37 | 1+iT2 |
| 41 | 1+0.765T+T2 |
| 43 | 1+(1+i)T+iT2 |
| 47 | 1+0.765T+T2 |
| 53 | 1−iT2 |
| 59 | 1+(1.30−1.30i)T−iT2 |
| 61 | 1+iT2 |
| 67 | 1+iT2 |
| 71 | 1+0.765iT−T2 |
| 73 | 1+T2 |
| 79 | 1+1.41iT−T2 |
| 83 | 1+(−1.30−1.30i)T+iT2 |
| 89 | 1+1.84T+T2 |
| 97 | 1−T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.636087941770067442913858607211, −8.687697273127681205114119419709, −7.54614478949998433734026428295, −6.73679523140277139872964503385, −6.16070767542309768593672075791, −5.27235756799664577362089609121, −4.42957884129729841586529078190, −3.48747140725327233743232613661, −2.50439798157545175101046151325, −1.64845607135786557056170392997,
1.56416235192031470248687706679, 2.85991859565469638922578385891, 3.63596700927309134359909146750, 4.78987707332713478440354933360, 5.44376736328926327040473540444, 6.06899684750243352898975042395, 6.91438459423210596832551377373, 7.980166874251283940163855866120, 8.406070256309084620478632222397, 9.376114407207631243297890298767