L(s) = 1 | + (0.923 − 0.382i)2-s + (0.707 − 0.707i)4-s + (0.541 + 0.541i)5-s + (0.382 − 0.923i)8-s + (0.707 + 0.292i)10-s + (−0.541 + 0.541i)11-s + (0.707 + 0.707i)13-s − i·16-s + 0.765·20-s + (−0.292 + 0.707i)22-s − 0.414i·25-s + (0.923 + 0.382i)26-s + (−0.382 − 0.923i)32-s + (0.707 − 0.292i)40-s − 0.765·41-s + ⋯ |
L(s) = 1 | + (0.923 − 0.382i)2-s + (0.707 − 0.707i)4-s + (0.541 + 0.541i)5-s + (0.382 − 0.923i)8-s + (0.707 + 0.292i)10-s + (−0.541 + 0.541i)11-s + (0.707 + 0.707i)13-s − i·16-s + 0.765·20-s + (−0.292 + 0.707i)22-s − 0.414i·25-s + (0.923 + 0.382i)26-s + (−0.382 − 0.923i)32-s + (0.707 − 0.292i)40-s − 0.765·41-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.923 + 0.382i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(2.177816748\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.177816748\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.923 + 0.382i)T \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (-0.707 - 0.707i)T \) |
good | 5 | \( 1 + (-0.541 - 0.541i)T + iT^{2} \) |
| 7 | \( 1 - T^{2} \) |
| 11 | \( 1 + (0.541 - 0.541i)T - iT^{2} \) |
| 17 | \( 1 + T^{2} \) |
| 19 | \( 1 + iT^{2} \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + iT^{2} \) |
| 31 | \( 1 + T^{2} \) |
| 37 | \( 1 + iT^{2} \) |
| 41 | \( 1 + 0.765T + T^{2} \) |
| 43 | \( 1 + (1 + i)T + iT^{2} \) |
| 47 | \( 1 + 0.765T + T^{2} \) |
| 53 | \( 1 - iT^{2} \) |
| 59 | \( 1 + (1.30 - 1.30i)T - iT^{2} \) |
| 61 | \( 1 + iT^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + 0.765iT - T^{2} \) |
| 73 | \( 1 + T^{2} \) |
| 79 | \( 1 + 1.41iT - T^{2} \) |
| 83 | \( 1 + (-1.30 - 1.30i)T + iT^{2} \) |
| 89 | \( 1 + 1.84T + T^{2} \) |
| 97 | \( 1 - T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.636087941770067442913858607211, −8.687697273127681205114119419709, −7.54614478949998433734026428295, −6.73679523140277139872964503385, −6.16070767542309768593672075791, −5.27235756799664577362089609121, −4.42957884129729841586529078190, −3.48747140725327233743232613661, −2.50439798157545175101046151325, −1.64845607135786557056170392997,
1.56416235192031470248687706679, 2.85991859565469638922578385891, 3.63596700927309134359909146750, 4.78987707332713478440354933360, 5.44376736328926327040473540444, 6.06899684750243352898975042395, 6.91438459423210596832551377373, 7.980166874251283940163855866120, 8.406070256309084620478632222397, 9.376114407207631243297890298767