L(s) = 1 | + (0.5 − 0.866i)7-s + (−0.5 + 0.866i)13-s + (1 − 1.73i)19-s + 25-s + 31-s + (−1.5 − 0.866i)43-s + (−0.5 + 0.866i)61-s + (0.5 + 0.866i)67-s − 1.73i·73-s − 1.73i·79-s + (0.499 + 0.866i)91-s + (1.5 + 0.866i)97-s + 1.73i·103-s + 1.73i·109-s + ⋯ |
L(s) = 1 | + (0.5 − 0.866i)7-s + (−0.5 + 0.866i)13-s + (1 − 1.73i)19-s + 25-s + 31-s + (−1.5 − 0.866i)43-s + (−0.5 + 0.866i)61-s + (0.5 + 0.866i)67-s − 1.73i·73-s − 1.73i·79-s + (0.499 + 0.866i)91-s + (1.5 + 0.866i)97-s + 1.73i·103-s + 1.73i·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1872 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.859 + 0.511i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.215742933\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.215742933\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 13 | \( 1 + (0.5 - 0.866i)T \) |
good | 5 | \( 1 - T^{2} \) |
| 7 | \( 1 + (-0.5 + 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 11 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 17 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 19 | \( 1 + (-1 + 1.73i)T + (-0.5 - 0.866i)T^{2} \) |
| 23 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 29 | \( 1 + (-0.5 + 0.866i)T^{2} \) |
| 31 | \( 1 - T + T^{2} \) |
| 37 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 41 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 43 | \( 1 + (1.5 + 0.866i)T + (0.5 + 0.866i)T^{2} \) |
| 47 | \( 1 + T^{2} \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 61 | \( 1 + (0.5 - 0.866i)T + (-0.5 - 0.866i)T^{2} \) |
| 67 | \( 1 + (-0.5 - 0.866i)T + (-0.5 + 0.866i)T^{2} \) |
| 71 | \( 1 + (-0.5 - 0.866i)T^{2} \) |
| 73 | \( 1 + 1.73iT - T^{2} \) |
| 79 | \( 1 + 1.73iT - T^{2} \) |
| 83 | \( 1 + T^{2} \) |
| 89 | \( 1 + (0.5 - 0.866i)T^{2} \) |
| 97 | \( 1 + (-1.5 - 0.866i)T + (0.5 + 0.866i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.270122457354307106114620230900, −8.688493767395100143807968470441, −7.59900747279923966940697472165, −7.09541984055325404482419459072, −6.36324519490532612749923817031, −4.95094137534503040634238591449, −4.68298980380325634009599432509, −3.48949418039190592007887775730, −2.41945539463594212418224734452, −1.06138918427718956768636872321,
1.42447038187771156563102882191, 2.64956560146176588859850882204, 3.50350428789934877603123737609, 4.80047423870362881622086045835, 5.41385126673182048669050671591, 6.18205017944184376491011712210, 7.21578883377869743361612671285, 8.151379180294265031923847796239, 8.438880104983498679039953818229, 9.653846259463153295125125448199