L(s) = 1 | + 2.29·2-s + 3.24·4-s − 2.24·5-s + 2.78i·7-s + 2.85·8-s − 5.14·10-s + (3.31 + 0.0382i)11-s − 6.74·13-s + 6.38i·14-s + 0.0447·16-s + 6.10i·17-s + (0.994 + 4.24i)19-s − 7.29·20-s + (7.59 + 0.0876i)22-s + 5.56·23-s + ⋯ |
L(s) = 1 | + 1.61·2-s + 1.62·4-s − 1.00·5-s + 1.05i·7-s + 1.00·8-s − 1.62·10-s + (0.999 + 0.0115i)11-s − 1.87·13-s + 1.70i·14-s + 0.0111·16-s + 1.48i·17-s + (0.228 + 0.973i)19-s − 1.63·20-s + (1.61 + 0.0186i)22-s + 1.16·23-s + ⋯ |
Λ(s)=(=(1881s/2ΓC(s)L(s)(−0.216−0.976i)Λ(2−s)
Λ(s)=(=(1881s/2ΓC(s+1/2)L(s)(−0.216−0.976i)Λ(1−s)
Degree: |
2 |
Conductor: |
1881
= 32⋅11⋅19
|
Sign: |
−0.216−0.976i
|
Analytic conductor: |
15.0198 |
Root analytic conductor: |
3.87554 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1881(208,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1881, ( :1/2), −0.216−0.976i)
|
Particular Values
L(1) |
≈ |
2.812927257 |
L(21) |
≈ |
2.812927257 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 11 | 1+(−3.31−0.0382i)T |
| 19 | 1+(−0.994−4.24i)T |
good | 2 | 1−2.29T+2T2 |
| 5 | 1+2.24T+5T2 |
| 7 | 1−2.78iT−7T2 |
| 13 | 1+6.74T+13T2 |
| 17 | 1−6.10iT−17T2 |
| 23 | 1−5.56T+23T2 |
| 29 | 1+3.42T+29T2 |
| 31 | 1−6.66iT−31T2 |
| 37 | 1+1.10iT−37T2 |
| 41 | 1−4.69T+41T2 |
| 43 | 1+7.61iT−43T2 |
| 47 | 1−5.34T+47T2 |
| 53 | 1−11.4iT−53T2 |
| 59 | 1+11.9iT−59T2 |
| 61 | 1−9.96iT−61T2 |
| 67 | 1+6.39iT−67T2 |
| 71 | 1−5.29iT−71T2 |
| 73 | 1−2.27iT−73T2 |
| 79 | 1+7.84T+79T2 |
| 83 | 1+15.4iT−83T2 |
| 89 | 1−4.77iT−89T2 |
| 97 | 1−14.8iT−97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.338570018565173716721893306039, −8.637830392969651921416778116439, −7.55897327737333145457648156170, −6.95847100839101622319797650837, −5.95699861637794880488663142397, −5.35943197305851320757790556895, −4.43707174649335655853330833488, −3.79208494579440500767906471716, −2.93133549936345328858420476578, −1.88858575271740291916988706339,
0.56283687687746734952784776242, 2.48573000695453179265730838843, 3.29776208353696691874090248579, 4.27963906991284586426176836637, 4.60579829962267019289218339430, 5.45929856556949644553062692730, 6.77944398943514017472920401325, 7.18748349162981386708803482966, 7.66831796538312818373576794748, 9.178536055717067783936867203943