L(s) = 1 | + (−1.08 + 1.29i)2-s + (1.72 − 0.201i)3-s + (−0.151 − 0.861i)4-s + (1.13 − 0.954i)5-s + (−1.61 + 2.45i)6-s + (2.51 − 0.806i)7-s + (−1.65 − 0.953i)8-s + (2.91 − 0.693i)9-s + 2.51i·10-s + (−0.0836 + 0.0996i)11-s + (−0.435 − 1.45i)12-s + (−0.311 + 0.855i)13-s + (−1.69 + 4.15i)14-s + (1.76 − 1.87i)15-s + (4.68 − 1.70i)16-s − 5.63·17-s + ⋯ |
L(s) = 1 | + (−0.770 + 0.918i)2-s + (0.993 − 0.116i)3-s + (−0.0759 − 0.430i)4-s + (0.508 − 0.426i)5-s + (−0.658 + 1.00i)6-s + (0.952 − 0.304i)7-s + (−0.584 − 0.337i)8-s + (0.972 − 0.231i)9-s + 0.796i·10-s + (−0.0252 + 0.0300i)11-s + (−0.125 − 0.419i)12-s + (−0.0863 + 0.237i)13-s + (−0.453 + 1.10i)14-s + (0.455 − 0.483i)15-s + (1.17 − 0.426i)16-s − 1.36·17-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)(0.619−0.785i)Λ(2−s)
Λ(s)=(=(189s/2ΓC(s+1/2)L(s)(0.619−0.785i)Λ(1−s)
Degree: |
2 |
Conductor: |
189
= 33⋅7
|
Sign: |
0.619−0.785i
|
Analytic conductor: |
1.50917 |
Root analytic conductor: |
1.22848 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 189, ( :1/2), 0.619−0.785i)
|
Particular Values
L(1) |
≈ |
1.09431+0.530510i |
L(21) |
≈ |
1.09431+0.530510i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.72+0.201i)T |
| 7 | 1+(−2.51+0.806i)T |
good | 2 | 1+(1.08−1.29i)T+(−0.347−1.96i)T2 |
| 5 | 1+(−1.13+0.954i)T+(0.868−4.92i)T2 |
| 11 | 1+(0.0836−0.0996i)T+(−1.91−10.8i)T2 |
| 13 | 1+(0.311−0.855i)T+(−9.95−8.35i)T2 |
| 17 | 1+5.63T+17T2 |
| 19 | 1−0.0959iT−19T2 |
| 23 | 1+(2.22−6.10i)T+(−17.6−14.7i)T2 |
| 29 | 1+(−0.238−0.656i)T+(−22.2+18.6i)T2 |
| 31 | 1+(8.96−1.58i)T+(29.1−10.6i)T2 |
| 37 | 1+(−1.72+2.98i)T+(−18.5−32.0i)T2 |
| 41 | 1+(2.04+0.744i)T+(31.4+26.3i)T2 |
| 43 | 1+(−1.37+7.82i)T+(−40.4−14.7i)T2 |
| 47 | 1+(−2.18+12.3i)T+(−44.1−16.0i)T2 |
| 53 | 1+(−1.26−0.731i)T+(26.5+45.8i)T2 |
| 59 | 1+(−5.96−2.17i)T+(45.1+37.9i)T2 |
| 61 | 1+(7.69+1.35i)T+(57.3+20.8i)T2 |
| 67 | 1+(11.0−9.25i)T+(11.6−65.9i)T2 |
| 71 | 1+(−2.38+1.37i)T+(35.5−61.4i)T2 |
| 73 | 1+(6.94−4.01i)T+(36.5−63.2i)T2 |
| 79 | 1+(−0.310−0.260i)T+(13.7+77.7i)T2 |
| 83 | 1+(4.54−1.65i)T+(63.5−53.3i)T2 |
| 89 | 1−15.9T+89T2 |
| 97 | 1+(−10.2−1.81i)T+(91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.03518090119010279427711783602, −11.74861207096662387168573581941, −10.34840235388617404426882658093, −9.122713574554455470153452669219, −8.795787763496253921779273014659, −7.63392040422198378088405049055, −7.00332979829701178425121906783, −5.44839869583452874166247329659, −3.87642844258091703383201254136, −1.86842985824864306189332680960,
1.88721534736917274968966389007, 2.74113380838063970774328684606, 4.51891069216117168150500758128, 6.21705635466459724088164977134, 7.79370671173691733725827452281, 8.701381926054362495900317930788, 9.424045402070332715215835840994, 10.48187076118919101940266323862, 11.05609990014616616183754328156, 12.27442853626385159834675061956