L(s) = 1 | + (1.75 − 2.08i)2-s + (−1.10 + 1.33i)3-s + (−0.940 − 5.33i)4-s + (2.08 − 1.74i)5-s + (0.856 + 4.63i)6-s + (−0.122 + 2.64i)7-s + (−8.05 − 4.65i)8-s + (−0.568 − 2.94i)9-s − 7.40i·10-s + (0.0911 − 0.108i)11-s + (8.16 + 4.62i)12-s + (−0.695 + 1.91i)13-s + (5.29 + 4.88i)14-s + (0.0376 + 4.71i)15-s + (−13.6 + 4.96i)16-s + 4.00·17-s + ⋯ |
L(s) = 1 | + (1.23 − 1.47i)2-s + (−0.636 + 0.771i)3-s + (−0.470 − 2.66i)4-s + (0.931 − 0.781i)5-s + (0.349 + 1.89i)6-s + (−0.0463 + 0.998i)7-s + (−2.84 − 1.64i)8-s + (−0.189 − 0.981i)9-s − 2.34i·10-s + (0.0274 − 0.0327i)11-s + (2.35 + 1.33i)12-s + (−0.192 + 0.530i)13-s + (1.41 + 1.30i)14-s + (0.00971 + 1.21i)15-s + (−3.40 + 1.24i)16-s + 0.970·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.298 + 0.954i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.298 + 0.954i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.10864 - 1.50800i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.10864 - 1.50800i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 3 | \( 1 + (1.10 - 1.33i)T \) |
| 7 | \( 1 + (0.122 - 2.64i)T \) |
good | 2 | \( 1 + (-1.75 + 2.08i)T + (-0.347 - 1.96i)T^{2} \) |
| 5 | \( 1 + (-2.08 + 1.74i)T + (0.868 - 4.92i)T^{2} \) |
| 11 | \( 1 + (-0.0911 + 0.108i)T + (-1.91 - 10.8i)T^{2} \) |
| 13 | \( 1 + (0.695 - 1.91i)T + (-9.95 - 8.35i)T^{2} \) |
| 17 | \( 1 - 4.00T + 17T^{2} \) |
| 19 | \( 1 - 3.04iT - 19T^{2} \) |
| 23 | \( 1 + (0.449 - 1.23i)T + (-17.6 - 14.7i)T^{2} \) |
| 29 | \( 1 + (-2.12 - 5.84i)T + (-22.2 + 18.6i)T^{2} \) |
| 31 | \( 1 + (4.18 - 0.738i)T + (29.1 - 10.6i)T^{2} \) |
| 37 | \( 1 + (-4.69 + 8.12i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (-0.303 - 0.110i)T + (31.4 + 26.3i)T^{2} \) |
| 43 | \( 1 + (-0.643 + 3.65i)T + (-40.4 - 14.7i)T^{2} \) |
| 47 | \( 1 + (1.15 - 6.57i)T + (-44.1 - 16.0i)T^{2} \) |
| 53 | \( 1 + (6.59 + 3.81i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (6.06 + 2.20i)T + (45.1 + 37.9i)T^{2} \) |
| 61 | \( 1 + (11.1 + 1.96i)T + (57.3 + 20.8i)T^{2} \) |
| 67 | \( 1 + (1.37 - 1.15i)T + (11.6 - 65.9i)T^{2} \) |
| 71 | \( 1 + (-6.03 + 3.48i)T + (35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 + (-3.67 + 2.12i)T + (36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 + (11.4 + 9.62i)T + (13.7 + 77.7i)T^{2} \) |
| 83 | \( 1 + (0.966 - 0.351i)T + (63.5 - 53.3i)T^{2} \) |
| 89 | \( 1 + 5.17T + 89T^{2} \) |
| 97 | \( 1 + (7.25 + 1.27i)T + (91.1 + 33.1i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−12.42043203818800932923441099670, −11.48895468415244982903365169901, −10.53096926857948685108813099883, −9.544980974801195547255002714015, −9.133907656486211128037052225426, −6.06456160636455591706472921716, −5.50725270754809051139528324921, −4.67594730656399651065583312204, −3.29857073796211077914382443059, −1.67082978424396752150744859438,
2.92935547350536007070193442701, 4.61504876128693274895956745291, 5.77877425320820477227379326674, 6.47504076346463991882204836245, 7.29971313239781833650008855071, 8.066554144042852172113110129943, 9.957650225950072635861691293310, 11.21244036401565638948378504787, 12.38002695977875560154535424468, 13.24490384929582558676693654141