L(s) = 1 | + (1.75 − 2.08i)2-s + (−1.10 + 1.33i)3-s + (−0.940 − 5.33i)4-s + (2.08 − 1.74i)5-s + (0.856 + 4.63i)6-s + (−0.122 + 2.64i)7-s + (−8.05 − 4.65i)8-s + (−0.568 − 2.94i)9-s − 7.40i·10-s + (0.0911 − 0.108i)11-s + (8.16 + 4.62i)12-s + (−0.695 + 1.91i)13-s + (5.29 + 4.88i)14-s + (0.0376 + 4.71i)15-s + (−13.6 + 4.96i)16-s + 4.00·17-s + ⋯ |
L(s) = 1 | + (1.23 − 1.47i)2-s + (−0.636 + 0.771i)3-s + (−0.470 − 2.66i)4-s + (0.931 − 0.781i)5-s + (0.349 + 1.89i)6-s + (−0.0463 + 0.998i)7-s + (−2.84 − 1.64i)8-s + (−0.189 − 0.981i)9-s − 2.34i·10-s + (0.0274 − 0.0327i)11-s + (2.35 + 1.33i)12-s + (−0.192 + 0.530i)13-s + (1.41 + 1.30i)14-s + (0.00971 + 1.21i)15-s + (−3.40 + 1.24i)16-s + 0.970·17-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)(−0.298+0.954i)Λ(2−s)
Λ(s)=(=(189s/2ΓC(s+1/2)L(s)(−0.298+0.954i)Λ(1−s)
Degree: |
2 |
Conductor: |
189
= 33⋅7
|
Sign: |
−0.298+0.954i
|
Analytic conductor: |
1.50917 |
Root analytic conductor: |
1.22848 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 189, ( :1/2), −0.298+0.954i)
|
Particular Values
L(1) |
≈ |
1.10864−1.50800i |
L(21) |
≈ |
1.10864−1.50800i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.10−1.33i)T |
| 7 | 1+(0.122−2.64i)T |
good | 2 | 1+(−1.75+2.08i)T+(−0.347−1.96i)T2 |
| 5 | 1+(−2.08+1.74i)T+(0.868−4.92i)T2 |
| 11 | 1+(−0.0911+0.108i)T+(−1.91−10.8i)T2 |
| 13 | 1+(0.695−1.91i)T+(−9.95−8.35i)T2 |
| 17 | 1−4.00T+17T2 |
| 19 | 1−3.04iT−19T2 |
| 23 | 1+(0.449−1.23i)T+(−17.6−14.7i)T2 |
| 29 | 1+(−2.12−5.84i)T+(−22.2+18.6i)T2 |
| 31 | 1+(4.18−0.738i)T+(29.1−10.6i)T2 |
| 37 | 1+(−4.69+8.12i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−0.303−0.110i)T+(31.4+26.3i)T2 |
| 43 | 1+(−0.643+3.65i)T+(−40.4−14.7i)T2 |
| 47 | 1+(1.15−6.57i)T+(−44.1−16.0i)T2 |
| 53 | 1+(6.59+3.81i)T+(26.5+45.8i)T2 |
| 59 | 1+(6.06+2.20i)T+(45.1+37.9i)T2 |
| 61 | 1+(11.1+1.96i)T+(57.3+20.8i)T2 |
| 67 | 1+(1.37−1.15i)T+(11.6−65.9i)T2 |
| 71 | 1+(−6.03+3.48i)T+(35.5−61.4i)T2 |
| 73 | 1+(−3.67+2.12i)T+(36.5−63.2i)T2 |
| 79 | 1+(11.4+9.62i)T+(13.7+77.7i)T2 |
| 83 | 1+(0.966−0.351i)T+(63.5−53.3i)T2 |
| 89 | 1+5.17T+89T2 |
| 97 | 1+(7.25+1.27i)T+(91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.42043203818800932923441099670, −11.48895468415244982903365169901, −10.53096926857948685108813099883, −9.544980974801195547255002714015, −9.133907656486211128037052225426, −6.06456160636455591706472921716, −5.50725270754809051139528324921, −4.67594730656399651065583312204, −3.29857073796211077914382443059, −1.67082978424396752150744859438,
2.92935547350536007070193442701, 4.61504876128693274895956745291, 5.77877425320820477227379326674, 6.47504076346463991882204836245, 7.29971313239781833650008855071, 8.066554144042852172113110129943, 9.957650225950072635861691293310, 11.21244036401565638948378504787, 12.38002695977875560154535424468, 13.24490384929582558676693654141