L(s) = 1 | + (−1.60 + 1.91i)2-s + (−1.44 − 0.952i)3-s + (−0.733 − 4.16i)4-s + (−0.273 + 0.229i)5-s + (4.14 − 1.23i)6-s + (2.61 − 0.393i)7-s + (4.81 + 2.77i)8-s + (1.18 + 2.75i)9-s − 0.892i·10-s + (−2.21 + 2.63i)11-s + (−2.90 + 6.71i)12-s + (−0.362 + 0.995i)13-s + (−3.44 + 5.63i)14-s + (0.615 − 0.0714i)15-s + (−5.08 + 1.85i)16-s + 5.82·17-s + ⋯ |
L(s) = 1 | + (−1.13 + 1.35i)2-s + (−0.835 − 0.550i)3-s + (−0.366 − 2.08i)4-s + (−0.122 + 0.102i)5-s + (1.69 − 0.504i)6-s + (0.988 − 0.148i)7-s + (1.70 + 0.982i)8-s + (0.394 + 0.918i)9-s − 0.282i·10-s + (−0.667 + 0.795i)11-s + (−0.838 + 1.93i)12-s + (−0.100 + 0.276i)13-s + (−0.920 + 1.50i)14-s + (0.158 − 0.0184i)15-s + (−1.27 + 0.462i)16-s + 1.41·17-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)(−0.213−0.976i)Λ(2−s)
Λ(s)=(=(189s/2ΓC(s+1/2)L(s)(−0.213−0.976i)Λ(1−s)
Degree: |
2 |
Conductor: |
189
= 33⋅7
|
Sign: |
−0.213−0.976i
|
Analytic conductor: |
1.50917 |
Root analytic conductor: |
1.22848 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(101,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 189, ( :1/2), −0.213−0.976i)
|
Particular Values
L(1) |
≈ |
0.318734+0.396084i |
L(21) |
≈ |
0.318734+0.396084i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.44+0.952i)T |
| 7 | 1+(−2.61+0.393i)T |
good | 2 | 1+(1.60−1.91i)T+(−0.347−1.96i)T2 |
| 5 | 1+(0.273−0.229i)T+(0.868−4.92i)T2 |
| 11 | 1+(2.21−2.63i)T+(−1.91−10.8i)T2 |
| 13 | 1+(0.362−0.995i)T+(−9.95−8.35i)T2 |
| 17 | 1−5.82T+17T2 |
| 19 | 1−4.08iT−19T2 |
| 23 | 1+(−0.737+2.02i)T+(−17.6−14.7i)T2 |
| 29 | 1+(−2.91−7.99i)T+(−22.2+18.6i)T2 |
| 31 | 1+(−3.71+0.655i)T+(29.1−10.6i)T2 |
| 37 | 1+(−0.937+1.62i)T+(−18.5−32.0i)T2 |
| 41 | 1+(−4.24−1.54i)T+(31.4+26.3i)T2 |
| 43 | 1+(1.24−7.08i)T+(−40.4−14.7i)T2 |
| 47 | 1+(−2.12+12.0i)T+(−44.1−16.0i)T2 |
| 53 | 1+(7.91+4.56i)T+(26.5+45.8i)T2 |
| 59 | 1+(3.87+1.41i)T+(45.1+37.9i)T2 |
| 61 | 1+(−13.0−2.30i)T+(57.3+20.8i)T2 |
| 67 | 1+(−3.53+2.96i)T+(11.6−65.9i)T2 |
| 71 | 1+(7.24−4.18i)T+(35.5−61.4i)T2 |
| 73 | 1+(6.45−3.72i)T+(36.5−63.2i)T2 |
| 79 | 1+(10.2+8.62i)T+(13.7+77.7i)T2 |
| 83 | 1+(−3.80+1.38i)T+(63.5−53.3i)T2 |
| 89 | 1+11.5T+89T2 |
| 97 | 1+(−4.45−0.785i)T+(91.1+33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.79590332530387955443219980764, −11.71519659021429470056293493448, −10.55733226859129629475440781804, −9.886660634107762554339706745118, −8.360280200150922426349765006666, −7.64547765769815080801895968325, −6.97815347251006639836427368567, −5.69580929056151017250369043353, −4.90256895098033179794704415660, −1.41978014533203601293627758965,
0.852340565517255519102660794241, 2.86482334881823590306374278603, 4.38941288305934384581787914350, 5.71803383026809459111761843965, 7.69388069299922639133595511613, 8.492204822837719763515926361997, 9.660194079163534824013749499160, 10.43633565350735687243658102009, 11.20989146672668147925600962680, 11.82742856595989492301584505654