L(s) = 1 | + (−0.0448 + 0.123i)2-s + (1.62 − 0.587i)3-s + (1.51 + 1.27i)4-s + (0.231 − 1.31i)5-s + (−0.000699 + 0.227i)6-s + (−0.772 + 2.53i)7-s + (−0.452 + 0.261i)8-s + (2.30 − 1.91i)9-s + (0.151 + 0.0873i)10-s + (−4.31 + 0.759i)11-s + (3.22 + 1.18i)12-s + (−1.38 − 3.81i)13-s + (−0.277 − 0.208i)14-s + (−0.393 − 2.27i)15-s + (0.676 + 3.83i)16-s + (1.85 − 3.21i)17-s + ⋯ |
L(s) = 1 | + (−0.0317 + 0.0871i)2-s + (0.940 − 0.339i)3-s + (0.759 + 0.637i)4-s + (0.103 − 0.586i)5-s + (−0.000285 + 0.0927i)6-s + (−0.292 + 0.956i)7-s + (−0.159 + 0.0923i)8-s + (0.769 − 0.638i)9-s + (0.0478 + 0.0276i)10-s + (−1.29 + 0.229i)11-s + (0.930 + 0.341i)12-s + (−0.385 − 1.05i)13-s + (−0.0740 − 0.0557i)14-s + (−0.101 − 0.587i)15-s + (0.169 + 0.959i)16-s + (0.450 − 0.780i)17-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)(0.994−0.101i)Λ(2−s)
Λ(s)=(=(189s/2ΓC(s+1/2)L(s)(0.994−0.101i)Λ(1−s)
Degree: |
2 |
Conductor: |
189
= 33⋅7
|
Sign: |
0.994−0.101i
|
Analytic conductor: |
1.50917 |
Root analytic conductor: |
1.22848 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(104,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 189, ( :1/2), 0.994−0.101i)
|
Particular Values
L(1) |
≈ |
1.64599+0.0837184i |
L(21) |
≈ |
1.64599+0.0837184i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(−1.62+0.587i)T |
| 7 | 1+(0.772−2.53i)T |
good | 2 | 1+(0.0448−0.123i)T+(−1.53−1.28i)T2 |
| 5 | 1+(−0.231+1.31i)T+(−4.69−1.71i)T2 |
| 11 | 1+(4.31−0.759i)T+(10.3−3.76i)T2 |
| 13 | 1+(1.38+3.81i)T+(−9.95+8.35i)T2 |
| 17 | 1+(−1.85+3.21i)T+(−8.5−14.7i)T2 |
| 19 | 1+(4.31−2.49i)T+(9.5−16.4i)T2 |
| 23 | 1+(−0.242+0.289i)T+(−3.99−22.6i)T2 |
| 29 | 1+(−1.57+4.31i)T+(−22.2−18.6i)T2 |
| 31 | 1+(0.693−0.826i)T+(−5.38−30.5i)T2 |
| 37 | 1+(0.172−0.298i)T+(−18.5−32.0i)T2 |
| 41 | 1+(5.09−1.85i)T+(31.4−26.3i)T2 |
| 43 | 1+(0.390+2.21i)T+(−40.4+14.7i)T2 |
| 47 | 1+(9.77−8.19i)T+(8.16−46.2i)T2 |
| 53 | 1−9.19iT−53T2 |
| 59 | 1+(−2.24+12.7i)T+(−55.4−20.1i)T2 |
| 61 | 1+(−1.14−1.36i)T+(−10.5+60.0i)T2 |
| 67 | 1+(−5.40+1.96i)T+(51.3−43.0i)T2 |
| 71 | 1+(−2.30−1.33i)T+(35.5+61.4i)T2 |
| 73 | 1+(−4.63+2.67i)T+(36.5−63.2i)T2 |
| 79 | 1+(−5.48−1.99i)T+(60.5+50.7i)T2 |
| 83 | 1+(−4.03−1.46i)T+(63.5+53.3i)T2 |
| 89 | 1+(−5.59−9.68i)T+(−44.5+77.0i)T2 |
| 97 | 1+(−14.5+2.55i)T+(91.1−33.1i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.72782176639392746729505753878, −12.00931297162052718351910105323, −10.50762017424586084353974482866, −9.422078589720078081359003515473, −8.228352880009328846003913396475, −7.84267183576469791706348658329, −6.48975508753989288984267554583, −5.11927155393591232900286323589, −3.17674697030904953857823489889, −2.30222797095000372415086318635,
2.12215285300381282511656673305, 3.34862435027317260679713836122, 4.88292153820271451847752433299, 6.58415489858408926407252366312, 7.29924559421858115762824651727, 8.525593773459567715502415520573, 9.952836705718468247638983160329, 10.40647498631566529849348186544, 11.17203306311286477485808565376, 12.76110322068616249917619672982