Properties

Label 2-189-189.104-c1-0-12
Degree 22
Conductor 189189
Sign 0.9940.101i0.994 - 0.101i
Analytic cond. 1.509171.50917
Root an. cond. 1.228481.22848
Motivic weight 11
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank 00

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.0448 + 0.123i)2-s + (1.62 − 0.587i)3-s + (1.51 + 1.27i)4-s + (0.231 − 1.31i)5-s + (−0.000699 + 0.227i)6-s + (−0.772 + 2.53i)7-s + (−0.452 + 0.261i)8-s + (2.30 − 1.91i)9-s + (0.151 + 0.0873i)10-s + (−4.31 + 0.759i)11-s + (3.22 + 1.18i)12-s + (−1.38 − 3.81i)13-s + (−0.277 − 0.208i)14-s + (−0.393 − 2.27i)15-s + (0.676 + 3.83i)16-s + (1.85 − 3.21i)17-s + ⋯
L(s)  = 1  + (−0.0317 + 0.0871i)2-s + (0.940 − 0.339i)3-s + (0.759 + 0.637i)4-s + (0.103 − 0.586i)5-s + (−0.000285 + 0.0927i)6-s + (−0.292 + 0.956i)7-s + (−0.159 + 0.0923i)8-s + (0.769 − 0.638i)9-s + (0.0478 + 0.0276i)10-s + (−1.29 + 0.229i)11-s + (0.930 + 0.341i)12-s + (−0.385 − 1.05i)13-s + (−0.0740 − 0.0557i)14-s + (−0.101 − 0.587i)15-s + (0.169 + 0.959i)16-s + (0.450 − 0.780i)17-s + ⋯

Functional equation

Λ(s)=(189s/2ΓC(s)L(s)=((0.9940.101i)Λ(2s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.994 - 0.101i)\, \overline{\Lambda}(2-s) \end{aligned}
Λ(s)=(189s/2ΓC(s+1/2)L(s)=((0.9940.101i)Λ(1s)\begin{aligned}\Lambda(s)=\mathstrut & 189 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.994 - 0.101i)\, \overline{\Lambda}(1-s) \end{aligned}

Invariants

Degree: 22
Conductor: 189189    =    3373^{3} \cdot 7
Sign: 0.9940.101i0.994 - 0.101i
Analytic conductor: 1.509171.50917
Root analytic conductor: 1.228481.22848
Motivic weight: 11
Rational: no
Arithmetic: yes
Character: χ189(104,)\chi_{189} (104, \cdot )
Primitive: yes
Self-dual: no
Analytic rank: 00
Selberg data: (2, 189, ( :1/2), 0.9940.101i)(2,\ 189,\ (\ :1/2),\ 0.994 - 0.101i)

Particular Values

L(1)L(1) \approx 1.64599+0.0837184i1.64599 + 0.0837184i
L(12)L(\frac12) \approx 1.64599+0.0837184i1.64599 + 0.0837184i
L(32)L(\frac{3}{2}) not available
L(1)L(1) not available

Euler product

   L(s)=pFp(ps)1L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1}
ppFp(T)F_p(T)
bad3 1+(1.62+0.587i)T 1 + (-1.62 + 0.587i)T
7 1+(0.7722.53i)T 1 + (0.772 - 2.53i)T
good2 1+(0.04480.123i)T+(1.531.28i)T2 1 + (0.0448 - 0.123i)T + (-1.53 - 1.28i)T^{2}
5 1+(0.231+1.31i)T+(4.691.71i)T2 1 + (-0.231 + 1.31i)T + (-4.69 - 1.71i)T^{2}
11 1+(4.310.759i)T+(10.33.76i)T2 1 + (4.31 - 0.759i)T + (10.3 - 3.76i)T^{2}
13 1+(1.38+3.81i)T+(9.95+8.35i)T2 1 + (1.38 + 3.81i)T + (-9.95 + 8.35i)T^{2}
17 1+(1.85+3.21i)T+(8.514.7i)T2 1 + (-1.85 + 3.21i)T + (-8.5 - 14.7i)T^{2}
19 1+(4.312.49i)T+(9.516.4i)T2 1 + (4.31 - 2.49i)T + (9.5 - 16.4i)T^{2}
23 1+(0.242+0.289i)T+(3.9922.6i)T2 1 + (-0.242 + 0.289i)T + (-3.99 - 22.6i)T^{2}
29 1+(1.57+4.31i)T+(22.218.6i)T2 1 + (-1.57 + 4.31i)T + (-22.2 - 18.6i)T^{2}
31 1+(0.6930.826i)T+(5.3830.5i)T2 1 + (0.693 - 0.826i)T + (-5.38 - 30.5i)T^{2}
37 1+(0.1720.298i)T+(18.532.0i)T2 1 + (0.172 - 0.298i)T + (-18.5 - 32.0i)T^{2}
41 1+(5.091.85i)T+(31.426.3i)T2 1 + (5.09 - 1.85i)T + (31.4 - 26.3i)T^{2}
43 1+(0.390+2.21i)T+(40.4+14.7i)T2 1 + (0.390 + 2.21i)T + (-40.4 + 14.7i)T^{2}
47 1+(9.778.19i)T+(8.1646.2i)T2 1 + (9.77 - 8.19i)T + (8.16 - 46.2i)T^{2}
53 19.19iT53T2 1 - 9.19iT - 53T^{2}
59 1+(2.24+12.7i)T+(55.420.1i)T2 1 + (-2.24 + 12.7i)T + (-55.4 - 20.1i)T^{2}
61 1+(1.141.36i)T+(10.5+60.0i)T2 1 + (-1.14 - 1.36i)T + (-10.5 + 60.0i)T^{2}
67 1+(5.40+1.96i)T+(51.343.0i)T2 1 + (-5.40 + 1.96i)T + (51.3 - 43.0i)T^{2}
71 1+(2.301.33i)T+(35.5+61.4i)T2 1 + (-2.30 - 1.33i)T + (35.5 + 61.4i)T^{2}
73 1+(4.63+2.67i)T+(36.563.2i)T2 1 + (-4.63 + 2.67i)T + (36.5 - 63.2i)T^{2}
79 1+(5.481.99i)T+(60.5+50.7i)T2 1 + (-5.48 - 1.99i)T + (60.5 + 50.7i)T^{2}
83 1+(4.031.46i)T+(63.5+53.3i)T2 1 + (-4.03 - 1.46i)T + (63.5 + 53.3i)T^{2}
89 1+(5.599.68i)T+(44.5+77.0i)T2 1 + (-5.59 - 9.68i)T + (-44.5 + 77.0i)T^{2}
97 1+(14.5+2.55i)T+(91.133.1i)T2 1 + (-14.5 + 2.55i)T + (91.1 - 33.1i)T^{2}
show more
show less
   L(s)=p j=12(1αj,pps)1L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}

Imaginary part of the first few zeros on the critical line

−12.72782176639392746729505753878, −12.00931297162052718351910105323, −10.50762017424586084353974482866, −9.422078589720078081359003515473, −8.228352880009328846003913396475, −7.84267183576469791706348658329, −6.48975508753989288984267554583, −5.11927155393591232900286323589, −3.17674697030904953857823489889, −2.30222797095000372415086318635, 2.12215285300381282511656673305, 3.34862435027317260679713836122, 4.88292153820271451847752433299, 6.58415489858408926407252366312, 7.29924559421858115762824651727, 8.525593773459567715502415520573, 9.952836705718468247638983160329, 10.40647498631566529849348186544, 11.17203306311286477485808565376, 12.76110322068616249917619672982

Graph of the ZZ-function along the critical line