L(s) = 1 | + (−1.65 + 0.603i)2-s + (−1.50 + 0.853i)3-s + (0.851 − 0.714i)4-s + (−3.19 + 2.67i)5-s + (1.98 − 2.32i)6-s + (0.729 + 2.54i)7-s + (0.783 − 1.35i)8-s + (1.54 − 2.57i)9-s + (3.67 − 6.36i)10-s + (−1.89 − 1.58i)11-s + (−0.673 + 1.80i)12-s + (0.108 − 0.0907i)13-s + (−2.74 − 3.77i)14-s + (2.52 − 6.75i)15-s + (−0.866 + 4.91i)16-s + (−0.351 + 0.608i)17-s + ⋯ |
L(s) = 1 | + (−1.17 + 0.426i)2-s + (−0.870 + 0.492i)3-s + (0.425 − 0.357i)4-s + (−1.42 + 1.19i)5-s + (0.809 − 0.948i)6-s + (0.275 + 0.961i)7-s + (0.277 − 0.479i)8-s + (0.514 − 0.857i)9-s + (1.16 − 2.01i)10-s + (−0.570 − 0.478i)11-s + (−0.194 + 0.520i)12-s + (0.0299 − 0.0251i)13-s + (−0.733 − 1.00i)14-s + (0.651 − 1.74i)15-s + (−0.216 + 1.22i)16-s + (−0.0852 + 0.147i)17-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)(−0.0900+0.995i)Λ(2−s)
Λ(s)=(=(189s/2ΓC(s+1/2)L(s)(−0.0900+0.995i)Λ(1−s)
Degree: |
2 |
Conductor: |
189
= 33⋅7
|
Sign: |
−0.0900+0.995i
|
Analytic conductor: |
1.50917 |
Root analytic conductor: |
1.22848 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(16,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 189, ( :1/2), −0.0900+0.995i)
|
Particular Values
L(1) |
≈ |
0.0314116−0.0343786i |
L(21) |
≈ |
0.0314116−0.0343786i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1+(1.50−0.853i)T |
| 7 | 1+(−0.729−2.54i)T |
good | 2 | 1+(1.65−0.603i)T+(1.53−1.28i)T2 |
| 5 | 1+(3.19−2.67i)T+(0.868−4.92i)T2 |
| 11 | 1+(1.89+1.58i)T+(1.91+10.8i)T2 |
| 13 | 1+(−0.108+0.0907i)T+(2.25−12.8i)T2 |
| 17 | 1+(0.351−0.608i)T+(−8.5−14.7i)T2 |
| 19 | 1+(3.23+5.59i)T+(−9.5+16.4i)T2 |
| 23 | 1+(−5.24−1.90i)T+(17.6+14.7i)T2 |
| 29 | 1+(−0.100−0.0846i)T+(5.03+28.5i)T2 |
| 31 | 1+(3.55−2.98i)T+(5.38−30.5i)T2 |
| 37 | 1−0.775T+37T2 |
| 41 | 1+(2.52−2.11i)T+(7.11−40.3i)T2 |
| 43 | 1+(5.66−2.06i)T+(32.9−27.6i)T2 |
| 47 | 1+(4.55+3.82i)T+(8.16+46.2i)T2 |
| 53 | 1+(−1.85−3.22i)T+(−26.5+45.8i)T2 |
| 59 | 1+(0.630+3.57i)T+(−55.4+20.1i)T2 |
| 61 | 1+(0.167+0.140i)T+(10.5+60.0i)T2 |
| 67 | 1+(14.4+5.24i)T+(51.3+43.0i)T2 |
| 71 | 1+(7.04+12.1i)T+(−35.5+61.4i)T2 |
| 73 | 1−12.7T+73T2 |
| 79 | 1+(5.42−1.97i)T+(60.5−50.7i)T2 |
| 83 | 1+(1.84+1.54i)T+(14.4+81.7i)T2 |
| 89 | 1+(0.452+0.783i)T+(−44.5+77.0i)T2 |
| 97 | 1+(1.73−0.629i)T+(74.3−62.3i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.02452790301848327741231206614, −11.83289297834584266443248940012, −11.03622417442030176596398807112, −10.55665559849358080990760615234, −9.181861056452167107550727429582, −8.281072932213606609000525573980, −7.22012743355082839349727996137, −6.40255222980157362701567871753, −4.76860151651763011349991498442, −3.27497301617792225114627679340,
0.07345063377660604240552211523, 1.39657334245255938382426908215, 4.26232178624134921107326202822, 5.16440054555445086763370993364, 7.19289206033700267199008827342, 7.87702009978334171145136951731, 8.623686721674459404310725614012, 10.05103431775139879391125637991, 10.90761088950754078561799483576, 11.62365268488874694913164144563