L(s) = 1 | − 2.09i·2-s − 2.39·4-s + (1.04 − 1.80i)5-s + (2.60 − 0.486i)7-s + 0.819i·8-s + (−3.79 − 2.18i)10-s + (−2.79 + 1.61i)11-s + (−2.68 + 1.55i)13-s + (−1.01 − 5.44i)14-s − 3.06·16-s + (−0.816 + 1.41i)17-s + (4.79 − 2.76i)19-s + (−2.49 + 4.32i)20-s + (3.38 + 5.85i)22-s + (1.00 + 0.580i)23-s + ⋯ |
L(s) = 1 | − 1.48i·2-s − 1.19·4-s + (0.467 − 0.809i)5-s + (0.982 − 0.183i)7-s + 0.289i·8-s + (−1.19 − 0.692i)10-s + (−0.843 + 0.486i)11-s + (−0.745 + 0.430i)13-s + (−0.272 − 1.45i)14-s − 0.766·16-s + (−0.197 + 0.342i)17-s + (1.09 − 0.634i)19-s + (−0.558 + 0.967i)20-s + (0.721 + 1.24i)22-s + (0.209 + 0.121i)23-s + ⋯ |
Λ(s)=(=(189s/2ΓC(s)L(s)(−0.749+0.662i)Λ(2−s)
Λ(s)=(=(189s/2ΓC(s+1/2)L(s)(−0.749+0.662i)Λ(1−s)
Degree: |
2 |
Conductor: |
189
= 33⋅7
|
Sign: |
−0.749+0.662i
|
Analytic conductor: |
1.50917 |
Root analytic conductor: |
1.22848 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ189(143,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 189, ( :1/2), −0.749+0.662i)
|
Particular Values
L(1) |
≈ |
0.445835−1.17786i |
L(21) |
≈ |
0.445835−1.17786i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1 |
| 7 | 1+(−2.60+0.486i)T |
good | 2 | 1+2.09iT−2T2 |
| 5 | 1+(−1.04+1.80i)T+(−2.5−4.33i)T2 |
| 11 | 1+(2.79−1.61i)T+(5.5−9.52i)T2 |
| 13 | 1+(2.68−1.55i)T+(6.5−11.2i)T2 |
| 17 | 1+(0.816−1.41i)T+(−8.5−14.7i)T2 |
| 19 | 1+(−4.79+2.76i)T+(9.5−16.4i)T2 |
| 23 | 1+(−1.00−0.580i)T+(11.5+19.9i)T2 |
| 29 | 1+(−7.05−4.07i)T+(14.5+25.1i)T2 |
| 31 | 1+5.96iT−31T2 |
| 37 | 1+(−2.82−4.89i)T+(−18.5+32.0i)T2 |
| 41 | 1+(1.35+2.34i)T+(−20.5+35.5i)T2 |
| 43 | 1+(0.974−1.68i)T+(−21.5−37.2i)T2 |
| 47 | 1+8.13T+47T2 |
| 53 | 1+(−5.27−3.04i)T+(26.5+45.8i)T2 |
| 59 | 1−3.96T+59T2 |
| 61 | 1−4.79iT−61T2 |
| 67 | 1+0.673T+67T2 |
| 71 | 1−7.01iT−71T2 |
| 73 | 1+(2.96+1.71i)T+(36.5+63.2i)T2 |
| 79 | 1+14.1T+79T2 |
| 83 | 1+(−1.54+2.67i)T+(−41.5−71.8i)T2 |
| 89 | 1+(2.45+4.25i)T+(−44.5+77.0i)T2 |
| 97 | 1+(2.07+1.20i)T+(48.5+84.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.03451114114315860776524155473, −11.34274812008040481118658796332, −10.28417760775648183114612332872, −9.536922917017560998927131652154, −8.503050981494284095162200129509, −7.19234877425529491462492095542, −5.18010831137235352432774634915, −4.47907152117764938275520614692, −2.65687486688240048697128031327, −1.36204481387660754923117448507,
2.67116898504546692365944055809, 4.88592622808414784242912477523, 5.64700415049810561167061765936, 6.79934970092097712344464255571, 7.74887611743675391720947098930, 8.458006948627170622249291502005, 9.868237459701506397128339184824, 10.86615629189624096585124751841, 11.96588635213837141393666992112, 13.45107287835890323355474756383