Properties

Label 2-18e2-1.1-c3-0-0
Degree $2$
Conductor $324$
Sign $1$
Analytic cond. $19.1166$
Root an. cond. $4.37225$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 21.0·5-s − 31.4·7-s − 36.6·11-s + 56.4·13-s + 35.8·17-s + 83.4·19-s + 69.5·23-s + 318.·25-s − 81.7·29-s − 72.9·31-s + 663.·35-s − 25.4·37-s − 399.·41-s − 83.4·43-s − 311.·47-s + 648.·49-s + 4.09·53-s + 772.·55-s − 352.·59-s + 3.54·61-s − 1.19e3·65-s + 492.·67-s + 154.·71-s + 305·73-s + 1.15e3·77-s + 671.·79-s + 1.29e3·83-s + ⋯
L(s)  = 1  − 1.88·5-s − 1.70·7-s − 1.00·11-s + 1.20·13-s + 0.510·17-s + 1.00·19-s + 0.630·23-s + 2.55·25-s − 0.523·29-s − 0.422·31-s + 3.20·35-s − 0.113·37-s − 1.52·41-s − 0.295·43-s − 0.967·47-s + 1.89·49-s + 0.0106·53-s + 1.89·55-s − 0.777·59-s + 0.00743·61-s − 2.27·65-s + 0.897·67-s + 0.258·71-s + 0.489·73-s + 1.70·77-s + 0.956·79-s + 1.71·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 324 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(324\)    =    \(2^{2} \cdot 3^{4}\)
Sign: $1$
Analytic conductor: \(19.1166\)
Root analytic conductor: \(4.37225\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 324,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.6987654868\)
\(L(\frac12)\) \(\approx\) \(0.6987654868\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
good5 \( 1 + 21.0T + 125T^{2} \)
7 \( 1 + 31.4T + 343T^{2} \)
11 \( 1 + 36.6T + 1.33e3T^{2} \)
13 \( 1 - 56.4T + 2.19e3T^{2} \)
17 \( 1 - 35.8T + 4.91e3T^{2} \)
19 \( 1 - 83.4T + 6.85e3T^{2} \)
23 \( 1 - 69.5T + 1.21e4T^{2} \)
29 \( 1 + 81.7T + 2.43e4T^{2} \)
31 \( 1 + 72.9T + 2.97e4T^{2} \)
37 \( 1 + 25.4T + 5.06e4T^{2} \)
41 \( 1 + 399.T + 6.89e4T^{2} \)
43 \( 1 + 83.4T + 7.95e4T^{2} \)
47 \( 1 + 311.T + 1.03e5T^{2} \)
53 \( 1 - 4.09T + 1.48e5T^{2} \)
59 \( 1 + 352.T + 2.05e5T^{2} \)
61 \( 1 - 3.54T + 2.26e5T^{2} \)
67 \( 1 - 492.T + 3.00e5T^{2} \)
71 \( 1 - 154.T + 3.57e5T^{2} \)
73 \( 1 - 305T + 3.89e5T^{2} \)
79 \( 1 - 671.T + 4.93e5T^{2} \)
83 \( 1 - 1.29e3T + 5.71e5T^{2} \)
89 \( 1 - 1.18e3T + 7.04e5T^{2} \)
97 \( 1 - 615.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.23074928489637685115718442322, −10.37750211206190403011451802029, −9.252258462132100365959047866578, −8.223208813124219231094464471305, −7.40966339375449554894075932387, −6.49045365419211824066673174331, −5.11964057969035803684936801117, −3.54263595492155741376837018996, −3.28041010413970998434169783772, −0.55116993514232491671914777466, 0.55116993514232491671914777466, 3.28041010413970998434169783772, 3.54263595492155741376837018996, 5.11964057969035803684936801117, 6.49045365419211824066673174331, 7.40966339375449554894075932387, 8.223208813124219231094464471305, 9.252258462132100365959047866578, 10.37750211206190403011451802029, 11.23074928489637685115718442322

Graph of the $Z$-function along the critical line