L(s) = 1 | − 21.0·5-s − 31.4·7-s − 36.6·11-s + 56.4·13-s + 35.8·17-s + 83.4·19-s + 69.5·23-s + 318.·25-s − 81.7·29-s − 72.9·31-s + 663.·35-s − 25.4·37-s − 399.·41-s − 83.4·43-s − 311.·47-s + 648.·49-s + 4.09·53-s + 772.·55-s − 352.·59-s + 3.54·61-s − 1.19e3·65-s + 492.·67-s + 154.·71-s + 305·73-s + 1.15e3·77-s + 671.·79-s + 1.29e3·83-s + ⋯ |
L(s) = 1 | − 1.88·5-s − 1.70·7-s − 1.00·11-s + 1.20·13-s + 0.510·17-s + 1.00·19-s + 0.630·23-s + 2.55·25-s − 0.523·29-s − 0.422·31-s + 3.20·35-s − 0.113·37-s − 1.52·41-s − 0.295·43-s − 0.967·47-s + 1.89·49-s + 0.0106·53-s + 1.89·55-s − 0.777·59-s + 0.00743·61-s − 2.27·65-s + 0.897·67-s + 0.258·71-s + 0.489·73-s + 1.70·77-s + 0.956·79-s + 1.71·83-s + ⋯ |
Λ(s)=(=(324s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(324s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
0.6987654868 |
L(21) |
≈ |
0.6987654868 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+21.0T+125T2 |
| 7 | 1+31.4T+343T2 |
| 11 | 1+36.6T+1.33e3T2 |
| 13 | 1−56.4T+2.19e3T2 |
| 17 | 1−35.8T+4.91e3T2 |
| 19 | 1−83.4T+6.85e3T2 |
| 23 | 1−69.5T+1.21e4T2 |
| 29 | 1+81.7T+2.43e4T2 |
| 31 | 1+72.9T+2.97e4T2 |
| 37 | 1+25.4T+5.06e4T2 |
| 41 | 1+399.T+6.89e4T2 |
| 43 | 1+83.4T+7.95e4T2 |
| 47 | 1+311.T+1.03e5T2 |
| 53 | 1−4.09T+1.48e5T2 |
| 59 | 1+352.T+2.05e5T2 |
| 61 | 1−3.54T+2.26e5T2 |
| 67 | 1−492.T+3.00e5T2 |
| 71 | 1−154.T+3.57e5T2 |
| 73 | 1−305T+3.89e5T2 |
| 79 | 1−671.T+4.93e5T2 |
| 83 | 1−1.29e3T+5.71e5T2 |
| 89 | 1−1.18e3T+7.04e5T2 |
| 97 | 1−615.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.23074928489637685115718442322, −10.37750211206190403011451802029, −9.252258462132100365959047866578, −8.223208813124219231094464471305, −7.40966339375449554894075932387, −6.49045365419211824066673174331, −5.11964057969035803684936801117, −3.54263595492155741376837018996, −3.28041010413970998434169783772, −0.55116993514232491671914777466,
0.55116993514232491671914777466, 3.28041010413970998434169783772, 3.54263595492155741376837018996, 5.11964057969035803684936801117, 6.49045365419211824066673174331, 7.40966339375449554894075932387, 8.223208813124219231094464471305, 9.252258462132100365959047866578, 10.37750211206190403011451802029, 11.23074928489637685115718442322