L(s) = 1 | + 13.8·5-s + 30.7·7-s + 43.9·11-s − 12.2·13-s − 76.0·17-s − 44.1·19-s + 78.6·23-s + 66.6·25-s + 92.7·29-s − 143.·31-s + 425.·35-s − 32.4·37-s + 335.·41-s − 498.·43-s + 281.·47-s + 599.·49-s + 628.·53-s + 607.·55-s − 504.·59-s + 371.·61-s − 169.·65-s − 162.·67-s − 433.·71-s − 629.·73-s + 1.34e3·77-s + 172.·79-s + 174.·83-s + ⋯ |
L(s) = 1 | + 1.23·5-s + 1.65·7-s + 1.20·11-s − 0.261·13-s − 1.08·17-s − 0.533·19-s + 0.712·23-s + 0.533·25-s + 0.594·29-s − 0.828·31-s + 2.05·35-s − 0.144·37-s + 1.27·41-s − 1.76·43-s + 0.874·47-s + 1.74·49-s + 1.62·53-s + 1.49·55-s − 1.11·59-s + 0.780·61-s − 0.323·65-s − 0.296·67-s − 0.724·71-s − 1.00·73-s + 1.99·77-s + 0.245·79-s + 0.231·83-s + ⋯ |
Λ(s)=(=(324s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(324s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
2.864931175 |
L(21) |
≈ |
2.864931175 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1−13.8T+125T2 |
| 7 | 1−30.7T+343T2 |
| 11 | 1−43.9T+1.33e3T2 |
| 13 | 1+12.2T+2.19e3T2 |
| 17 | 1+76.0T+4.91e3T2 |
| 19 | 1+44.1T+6.85e3T2 |
| 23 | 1−78.6T+1.21e4T2 |
| 29 | 1−92.7T+2.43e4T2 |
| 31 | 1+143.T+2.97e4T2 |
| 37 | 1+32.4T+5.06e4T2 |
| 41 | 1−335.T+6.89e4T2 |
| 43 | 1+498.T+7.95e4T2 |
| 47 | 1−281.T+1.03e5T2 |
| 53 | 1−628.T+1.48e5T2 |
| 59 | 1+504.T+2.05e5T2 |
| 61 | 1−371.T+2.26e5T2 |
| 67 | 1+162.T+3.00e5T2 |
| 71 | 1+433.T+3.57e5T2 |
| 73 | 1+629.T+3.89e5T2 |
| 79 | 1−172.T+4.93e5T2 |
| 83 | 1−174.T+5.71e5T2 |
| 89 | 1+336.T+7.04e5T2 |
| 97 | 1−84.3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.16502808497292810386443012774, −10.33631837722078395718682948532, −9.152036577930500540670138871157, −8.607281576638410956659068198216, −7.26355717778189446115713514171, −6.25017850298695457988834554870, −5.17176860769255246391722148474, −4.23545895023832252490074674592, −2.27233095316729874050757091284, −1.37462613473195221734714052449,
1.37462613473195221734714052449, 2.27233095316729874050757091284, 4.23545895023832252490074674592, 5.17176860769255246391722148474, 6.25017850298695457988834554870, 7.26355717778189446115713514171, 8.607281576638410956659068198216, 9.152036577930500540670138871157, 10.33631837722078395718682948532, 11.16502808497292810386443012774