L(s) = 1 | + (2.50 + 1.31i)2-s + (4.54 + 6.58i)4-s + 19.4i·5-s − 17.4i·7-s + (2.73 + 22.4i)8-s + (−25.5 + 48.6i)10-s + 65.7·11-s − 2.26·13-s + (22.9 − 43.7i)14-s + (−22.6 + 59.8i)16-s + 78.1i·17-s + 15.9i·19-s + (−127. + 88.2i)20-s + (164. + 86.3i)22-s − 180.·23-s + ⋯ |
L(s) = 1 | + (0.885 + 0.464i)2-s + (0.568 + 0.822i)4-s + 1.73i·5-s − 0.943i·7-s + (0.121 + 0.992i)8-s + (−0.806 + 1.53i)10-s + 1.80·11-s − 0.0483·13-s + (0.438 − 0.835i)14-s + (−0.353 + 0.935i)16-s + 1.11i·17-s + 0.192i·19-s + (−1.42 + 0.986i)20-s + (1.59 + 0.836i)22-s − 1.63·23-s + ⋯ |
Λ(s)=(=(324s/2ΓC(s)L(s)(−0.568−0.822i)Λ(4−s)
Λ(s)=(=(324s/2ΓC(s+3/2)L(s)(−0.568−0.822i)Λ(1−s)
Degree: |
2 |
Conductor: |
324
= 22⋅34
|
Sign: |
−0.568−0.822i
|
Analytic conductor: |
19.1166 |
Root analytic conductor: |
4.37225 |
Motivic weight: |
3 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ324(323,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 324, ( :3/2), −0.568−0.822i)
|
Particular Values
L(2) |
≈ |
3.223826708 |
L(21) |
≈ |
3.223826708 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(−2.50−1.31i)T |
| 3 | 1 |
good | 5 | 1−19.4iT−125T2 |
| 7 | 1+17.4iT−343T2 |
| 11 | 1−65.7T+1.33e3T2 |
| 13 | 1+2.26T+2.19e3T2 |
| 17 | 1−78.1iT−4.91e3T2 |
| 19 | 1−15.9iT−6.85e3T2 |
| 23 | 1+180.T+1.21e4T2 |
| 29 | 1+11.6iT−2.43e4T2 |
| 31 | 1−30.2iT−2.97e4T2 |
| 37 | 1+44.8T+5.06e4T2 |
| 41 | 1+307.iT−6.89e4T2 |
| 43 | 1+88.3iT−7.95e4T2 |
| 47 | 1+44.8T+1.03e5T2 |
| 53 | 1+90.6iT−1.48e5T2 |
| 59 | 1−605.T+2.05e5T2 |
| 61 | 1−283.T+2.26e5T2 |
| 67 | 1−622.iT−3.00e5T2 |
| 71 | 1−828.T+3.57e5T2 |
| 73 | 1−706.T+3.89e5T2 |
| 79 | 1+260.iT−4.93e5T2 |
| 83 | 1−902.T+5.71e5T2 |
| 89 | 1+44.4iT−7.04e5T2 |
| 97 | 1+1.35e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.54900392184299358859783382148, −10.75167608030434749665766710961, −9.935684251679867203437328576259, −8.334364430202129464788913259302, −7.22904453617433941972808643594, −6.65731275824638003759389454840, −5.92308089604453892603369153358, −3.91471086925480870420171017864, −3.72505577887812501186400757357, −2.04395734371884224611234120503,
0.901732298716070988181601361045, 2.07698336491174386060740949314, 3.82240389376622998754421472842, 4.74294671572722287671498687026, 5.61876883228196295215332081682, 6.58640767252330437596599889829, 8.203843639496537739514929395936, 9.298748381971074523225366509642, 9.619846738170060793126455641234, 11.40736641812087402389072417492