L(s) = 1 | + (−980. + 566. i)5-s + (1.54e3 − 2.67e3i)7-s + (980. + 566. i)11-s + (3.64e3 + 6.31e3i)13-s + 5.89e4i·17-s − 8.03e4·19-s + (−8.43e4 + 4.87e4i)23-s + (4.46e5 − 7.72e5i)25-s + (7.48e5 + 4.32e5i)29-s + (−2.17e5 − 3.77e5i)31-s + 3.50e6i·35-s + 1.15e6·37-s + (−2.35e6 + 1.35e6i)41-s + (−4.95e5 + 8.57e5i)43-s + (5.80e6 + 3.35e6i)47-s + ⋯ |
L(s) = 1 | + (−1.56 + 0.906i)5-s + (0.644 − 1.11i)7-s + (0.0670 + 0.0386i)11-s + (0.127 + 0.221i)13-s + 0.705i·17-s − 0.616·19-s + (−0.301 + 0.174i)23-s + (1.14 − 1.97i)25-s + (1.05 + 0.610i)29-s + (−0.236 − 0.408i)31-s + 2.33i·35-s + 0.618·37-s + (−0.832 + 0.480i)41-s + (−0.144 + 0.250i)43-s + (1.18 + 0.686i)47-s + ⋯ |
Λ(s)=(=(324s/2ΓC(s)L(s)(−0.642+0.766i)Λ(9−s)
Λ(s)=(=(324s/2ΓC(s+4)L(s)(−0.642+0.766i)Λ(1−s)
Degree: |
2 |
Conductor: |
324
= 22⋅34
|
Sign: |
−0.642+0.766i
|
Analytic conductor: |
131.990 |
Root analytic conductor: |
11.4887 |
Motivic weight: |
8 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ324(269,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 324, ( :4), −0.642+0.766i)
|
Particular Values
L(29) |
≈ |
0.3182181139 |
L(21) |
≈ |
0.3182181139 |
L(5) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1 |
good | 5 | 1+(980.−566.i)T+(1.95e5−3.38e5i)T2 |
| 7 | 1+(−1.54e3+2.67e3i)T+(−2.88e6−4.99e6i)T2 |
| 11 | 1+(−980.−566.i)T+(1.07e8+1.85e8i)T2 |
| 13 | 1+(−3.64e3−6.31e3i)T+(−4.07e8+7.06e8i)T2 |
| 17 | 1−5.89e4iT−6.97e9T2 |
| 19 | 1+8.03e4T+1.69e10T2 |
| 23 | 1+(8.43e4−4.87e4i)T+(3.91e10−6.78e10i)T2 |
| 29 | 1+(−7.48e5−4.32e5i)T+(2.50e11+4.33e11i)T2 |
| 31 | 1+(2.17e5+3.77e5i)T+(−4.26e11+7.38e11i)T2 |
| 37 | 1−1.15e6T+3.51e12T2 |
| 41 | 1+(2.35e6−1.35e6i)T+(3.99e12−6.91e12i)T2 |
| 43 | 1+(4.95e5−8.57e5i)T+(−5.84e12−1.01e13i)T2 |
| 47 | 1+(−5.80e6−3.35e6i)T+(1.19e13+2.06e13i)T2 |
| 53 | 1−1.00e7iT−6.22e13T2 |
| 59 | 1+(−1.38e6+7.99e5i)T+(7.34e13−1.27e14i)T2 |
| 61 | 1+(9.68e6−1.67e7i)T+(−9.58e13−1.66e14i)T2 |
| 67 | 1+(−1.40e7−2.42e7i)T+(−2.03e14+3.51e14i)T2 |
| 71 | 1+3.36e7iT−6.45e14T2 |
| 73 | 1+2.52e7T+8.06e14T2 |
| 79 | 1+(−3.17e7+5.49e7i)T+(−7.58e14−1.31e15i)T2 |
| 83 | 1+(4.11e7+2.37e7i)T+(1.12e15+1.95e15i)T2 |
| 89 | 1+7.82e7iT−3.93e15T2 |
| 97 | 1+(9.77e6−1.69e7i)T+(−3.91e15−6.78e15i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.31582293240025704686560383782, −8.678287061796805546243948405185, −7.81009913586690114673068511395, −7.24530518010861372501426285287, −6.27135937933247699979368148931, −4.46726885611998399805418049954, −4.01335631690749118353639656327, −2.90853848955852167003406593307, −1.30114900938714044914439889994, −0.082460914062800496435394924326,
0.924070345090790133409683396140, 2.34219289209548342589335809049, 3.68960808543985377799557770690, 4.68287513344033440161377303150, 5.43026579478538334181023058169, 6.87930607289050590409246193557, 8.146469048662545949180545386406, 8.391542997547529727329145217825, 9.365155393731117511918114021805, 10.80336085884998647090786744545