L(s) = 1 | + (0.258 − 0.965i)3-s + (0.366 + 1.36i)5-s + (0.707 − 0.707i)7-s + (−0.965 − 0.258i)11-s − 13-s + 1.41·15-s + (0.866 − 0.5i)17-s + (0.707 − 1.22i)19-s + (−0.500 − 0.866i)21-s + (−0.866 + 0.5i)25-s + (0.707 − 0.707i)27-s + (1 − i)29-s + (−0.517 + 1.93i)31-s + (−0.499 + 0.866i)33-s + (1.22 + 0.707i)35-s + ⋯ |
L(s) = 1 | + (0.258 − 0.965i)3-s + (0.366 + 1.36i)5-s + (0.707 − 0.707i)7-s + (−0.965 − 0.258i)11-s − 13-s + 1.41·15-s + (0.866 − 0.5i)17-s + (0.707 − 1.22i)19-s + (−0.500 − 0.866i)21-s + (−0.866 + 0.5i)25-s + (0.707 − 0.707i)27-s + (1 − i)29-s + (−0.517 + 1.93i)31-s + (−0.499 + 0.866i)33-s + (1.22 + 0.707i)35-s + ⋯ |
Λ(s)=(=(1904s/2ΓC(s)L(s)(0.834+0.550i)Λ(1−s)
Λ(s)=(=(1904s/2ΓC(s)L(s)(0.834+0.550i)Λ(1−s)
Degree: |
2 |
Conductor: |
1904
= 24⋅7⋅17
|
Sign: |
0.834+0.550i
|
Analytic conductor: |
0.950219 |
Root analytic conductor: |
0.974792 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1904(191,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1904, ( :0), 0.834+0.550i)
|
Particular Values
L(21) |
≈ |
1.421861399 |
L(21) |
≈ |
1.421861399 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 7 | 1+(−0.707+0.707i)T |
| 17 | 1+(−0.866+0.5i)T |
good | 3 | 1+(−0.258+0.965i)T+(−0.866−0.5i)T2 |
| 5 | 1+(−0.366−1.36i)T+(−0.866+0.5i)T2 |
| 11 | 1+(0.965+0.258i)T+(0.866+0.5i)T2 |
| 13 | 1+T+T2 |
| 19 | 1+(−0.707+1.22i)T+(−0.5−0.866i)T2 |
| 23 | 1+(−0.866+0.5i)T2 |
| 29 | 1+(−1+i)T−iT2 |
| 31 | 1+(0.517−1.93i)T+(−0.866−0.5i)T2 |
| 37 | 1+(−0.866+0.5i)T2 |
| 41 | 1+(−1−i)T+iT2 |
| 43 | 1+T2 |
| 47 | 1+(−1.22−0.707i)T+(0.5+0.866i)T2 |
| 53 | 1+(0.866−0.5i)T+(0.5−0.866i)T2 |
| 59 | 1+(−0.5+0.866i)T2 |
| 61 | 1+(0.866−0.5i)T2 |
| 67 | 1+(1.22−0.707i)T+(0.5−0.866i)T2 |
| 71 | 1+(−0.707−0.707i)T+iT2 |
| 73 | 1+(1.36+0.366i)T+(0.866+0.5i)T2 |
| 79 | 1+(0.258+0.965i)T+(−0.866+0.5i)T2 |
| 83 | 1+T2 |
| 89 | 1+(0.5−0.866i)T+(−0.5−0.866i)T2 |
| 97 | 1−iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.430474160928843441855637565767, −8.195738259904977565455691118793, −7.40449066746964296718659526842, −7.30993249873815904036546887635, −6.44752193628854747038491178194, −5.33073329913973904758818493171, −4.51244683588579382396960443648, −2.85299408165881130464906974631, −2.67487236743316888053704767631, −1.24004226250255500724432688634,
1.45260850218096057634228639266, 2.58161704036015341718477187376, 3.86835255858916967228926960950, 4.71823252058634777636533993823, 5.31119023176779212851773508432, 5.79717260686729156260461618542, 7.47873422636363537817427305353, 8.034416802055997668016947181909, 8.853631033827840468610142055005, 9.462594181931665626488406835976