L(s) = 1 | + 27·3-s − 390·5-s − 64·7-s + 729·9-s + 948·11-s + 5.09e3·13-s − 1.05e4·15-s + 2.83e4·17-s + 8.62e3·19-s − 1.72e3·21-s − 1.52e4·23-s + 7.39e4·25-s + 1.96e4·27-s − 3.65e4·29-s − 2.76e5·31-s + 2.55e4·33-s + 2.49e4·35-s − 2.68e5·37-s + 1.37e5·39-s − 6.29e5·41-s − 6.85e5·43-s − 2.84e5·45-s + 5.83e5·47-s − 8.19e5·49-s + 7.66e5·51-s + 4.28e5·53-s − 3.69e5·55-s + ⋯ |
L(s) = 1 | + 0.577·3-s − 1.39·5-s − 0.0705·7-s + 1/3·9-s + 0.214·11-s + 0.643·13-s − 0.805·15-s + 1.40·17-s + 0.288·19-s − 0.0407·21-s − 0.262·23-s + 0.946·25-s + 0.192·27-s − 0.277·29-s − 1.66·31-s + 0.123·33-s + 0.0984·35-s − 0.871·37-s + 0.371·39-s − 1.42·41-s − 1.31·43-s − 0.465·45-s + 0.819·47-s − 0.995·49-s + 0.809·51-s + 0.394·53-s − 0.299·55-s + ⋯ |
Λ(s)=(=(192s/2ΓC(s)L(s)−Λ(8−s)
Λ(s)=(=(192s/2ΓC(s+7/2)L(s)−Λ(1−s)
Particular Values
L(4) |
= |
0 |
L(21) |
= |
0 |
L(29) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−p3T |
good | 5 | 1+78pT+p7T2 |
| 7 | 1+64T+p7T2 |
| 11 | 1−948T+p7T2 |
| 13 | 1−5098T+p7T2 |
| 17 | 1−28386T+p7T2 |
| 19 | 1−8620T+p7T2 |
| 23 | 1+15288T+p7T2 |
| 29 | 1+36510T+p7T2 |
| 31 | 1+276808T+p7T2 |
| 37 | 1+268526T+p7T2 |
| 41 | 1+629718T+p7T2 |
| 43 | 1+685772T+p7T2 |
| 47 | 1−583296T+p7T2 |
| 53 | 1−428058T+p7T2 |
| 59 | 1+1306380T+p7T2 |
| 61 | 1+300662T+p7T2 |
| 67 | 1−507244T+p7T2 |
| 71 | 1−5560632T+p7T2 |
| 73 | 1−1369082T+p7T2 |
| 79 | 1+6913720T+p7T2 |
| 83 | 1−4376748T+p7T2 |
| 89 | 1+8528310T+p7T2 |
| 97 | 1+8826814T+p7T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.84922696098999470447219261631, −9.681961161391134871247961888112, −8.530798418160299560576128144086, −7.82129646082650928019867600119, −6.90271509903548344257030697629, −5.32519708966436334688135072451, −3.85599623626722855000687903434, −3.30650856190990078215543284785, −1.47026575733247437183785310283, 0,
1.47026575733247437183785310283, 3.30650856190990078215543284785, 3.85599623626722855000687903434, 5.32519708966436334688135072451, 6.90271509903548344257030697629, 7.82129646082650928019867600119, 8.530798418160299560576128144086, 9.681961161391134871247961888112, 10.84922696098999470447219261631