L(s) = 1 | + 3·3-s + 2·7-s + 9·9-s + 22·13-s − 26·19-s + 6·21-s + 25·25-s + 27·27-s − 46·31-s − 26·37-s + 66·39-s + 22·43-s − 45·49-s − 78·57-s − 74·61-s + 18·63-s − 122·67-s − 46·73-s + 75·75-s − 142·79-s + 81·81-s + 44·91-s − 138·93-s + 2·97-s + 194·103-s + 214·109-s − 78·111-s + ⋯ |
L(s) = 1 | + 3-s + 2/7·7-s + 9-s + 1.69·13-s − 1.36·19-s + 2/7·21-s + 25-s + 27-s − 1.48·31-s − 0.702·37-s + 1.69·39-s + 0.511·43-s − 0.918·49-s − 1.36·57-s − 1.21·61-s + 2/7·63-s − 1.82·67-s − 0.630·73-s + 75-s − 1.79·79-s + 81-s + 0.483·91-s − 1.48·93-s + 2/97·97-s + 1.88·103-s + 1.96·109-s − 0.702·111-s + ⋯ |
Λ(s)=(=(192s/2ΓC(s)L(s)Λ(3−s)
Λ(s)=(=(192s/2ΓC(s+1)L(s)Λ(1−s)
Degree: |
2 |
Conductor: |
192
= 26⋅3
|
Sign: |
1
|
Analytic conductor: |
5.23162 |
Root analytic conductor: |
2.28727 |
Motivic weight: |
2 |
Rational: |
yes |
Arithmetic: |
yes |
Character: |
χ192(65,⋅)
|
Primitive: |
yes
|
Self-dual: |
yes
|
Analytic rank: |
0
|
Selberg data: |
(2, 192, ( :1), 1)
|
Particular Values
L(23) |
≈ |
2.208326295 |
L(21) |
≈ |
2.208326295 |
L(2) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1−pT |
good | 5 | (1−pT)(1+pT) |
| 7 | 1−2T+p2T2 |
| 11 | (1−pT)(1+pT) |
| 13 | 1−22T+p2T2 |
| 17 | (1−pT)(1+pT) |
| 19 | 1+26T+p2T2 |
| 23 | (1−pT)(1+pT) |
| 29 | (1−pT)(1+pT) |
| 31 | 1+46T+p2T2 |
| 37 | 1+26T+p2T2 |
| 41 | (1−pT)(1+pT) |
| 43 | 1−22T+p2T2 |
| 47 | (1−pT)(1+pT) |
| 53 | (1−pT)(1+pT) |
| 59 | (1−pT)(1+pT) |
| 61 | 1+74T+p2T2 |
| 67 | 1+122T+p2T2 |
| 71 | (1−pT)(1+pT) |
| 73 | 1+46T+p2T2 |
| 79 | 1+142T+p2T2 |
| 83 | (1−pT)(1+pT) |
| 89 | (1−pT)(1+pT) |
| 97 | 1−2T+p2T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.61473187465100986317566421057, −11.13112602429135677172967195379, −10.39382314282203396087111061641, −8.959671153175178664032384476176, −8.524206686848126024137066396593, −7.31461290749082860154761378751, −6.11540748883271152272567997396, −4.44365225141518026083351121884, −3.30800484609230149778015279707, −1.67565795327991440860324882684,
1.67565795327991440860324882684, 3.30800484609230149778015279707, 4.44365225141518026083351121884, 6.11540748883271152272567997396, 7.31461290749082860154761378751, 8.524206686848126024137066396593, 8.959671153175178664032384476176, 10.39382314282203396087111061641, 11.13112602429135677172967195379, 12.61473187465100986317566421057