L(s) = 1 | + (−0.618 + 1.61i)3-s + i·5-s − 2i·7-s + (−2.23 − 2.00i)9-s + 2.47·11-s + 1.23·13-s + (−1.61 − 0.618i)15-s − 0.763i·17-s + 5.23i·19-s + (3.23 + 1.23i)21-s + 0.472·23-s − 25-s + (4.61 − 2.38i)27-s − 8.47i·29-s + 4.76i·31-s + ⋯ |
L(s) = 1 | + (−0.356 + 0.934i)3-s + 0.447i·5-s − 0.755i·7-s + (−0.745 − 0.666i)9-s + 0.745·11-s + 0.342·13-s + (−0.417 − 0.159i)15-s − 0.185i·17-s + 1.20i·19-s + (0.706 + 0.269i)21-s + 0.0984·23-s − 0.200·25-s + (0.888 − 0.458i)27-s − 1.57i·29-s + 0.855i·31-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(0.356−0.934i)Λ(2−s)
Λ(s)=(=(1920s/2ΓC(s+1/2)L(s)(0.356−0.934i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
0.356−0.934i
|
Analytic conductor: |
15.3312 |
Root analytic conductor: |
3.91551 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(1151,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :1/2), 0.356−0.934i)
|
Particular Values
L(1) |
≈ |
1.524658499 |
L(21) |
≈ |
1.524658499 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1 |
| 3 | 1+(0.618−1.61i)T |
| 5 | 1−iT |
good | 7 | 1+2iT−7T2 |
| 11 | 1−2.47T+11T2 |
| 13 | 1−1.23T+13T2 |
| 17 | 1+0.763iT−17T2 |
| 19 | 1−5.23iT−19T2 |
| 23 | 1−0.472T+23T2 |
| 29 | 1+8.47iT−29T2 |
| 31 | 1−4.76iT−31T2 |
| 37 | 1−7.70T+37T2 |
| 41 | 1+1.52iT−41T2 |
| 43 | 1−9.70iT−43T2 |
| 47 | 1−4.47T+47T2 |
| 53 | 1+4.47iT−53T2 |
| 59 | 1−6.47T+59T2 |
| 61 | 1−12.4T+61T2 |
| 67 | 1−11.2iT−67T2 |
| 71 | 1−4T+71T2 |
| 73 | 1+0.472T+73T2 |
| 79 | 1−8.18iT−79T2 |
| 83 | 1+11.7T+83T2 |
| 89 | 1−1.52iT−89T2 |
| 97 | 1+12.4T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.687963597511723098973860301978, −8.623038536613229651034898456164, −7.85901279630310534247801194533, −6.82398750904941092109139357871, −6.16131530400902620773641473818, −5.35177240514990307255297511844, −4.08566541195703151691175913440, −3.90630619031656235645132869779, −2.66898222692323206581130604943, −1.01223335450960152705044685934,
0.75487618433219003998161834055, 1.89337015430623446756137943058, 2.87778221110115695290435046549, 4.18389345280658754818252238672, 5.24606143271271431790127939873, 5.85131608777129323898687340792, 6.72195971696560272052635887975, 7.34359476367446198920440958652, 8.432095716789926301089049614303, 8.839107277052600642613345239342