L(s) = 1 | + (−0.290 + 0.956i)2-s + (−0.0980 − 0.995i)3-s + (−0.831 − 0.555i)4-s + (0.881 + 0.471i)5-s + (0.980 + 0.195i)6-s + (0.773 − 0.634i)8-s + (−0.980 + 0.195i)9-s + (−0.707 + 0.707i)10-s + (−0.471 + 0.881i)12-s + (0.382 − 0.923i)15-s + (0.382 + 0.923i)16-s + (0.360 + 0.871i)17-s + (0.0980 − 0.995i)18-s + (0.448 − 1.47i)19-s + (−0.471 − 0.881i)20-s + ⋯ |
L(s) = 1 | + (−0.290 + 0.956i)2-s + (−0.0980 − 0.995i)3-s + (−0.831 − 0.555i)4-s + (0.881 + 0.471i)5-s + (0.980 + 0.195i)6-s + (0.773 − 0.634i)8-s + (−0.980 + 0.195i)9-s + (−0.707 + 0.707i)10-s + (−0.471 + 0.881i)12-s + (0.382 − 0.923i)15-s + (0.382 + 0.923i)16-s + (0.360 + 0.871i)17-s + (0.0980 − 0.995i)18-s + (0.448 − 1.47i)19-s + (−0.471 − 0.881i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.941 - 0.336i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.941 - 0.336i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.042752545\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.042752545\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.290 - 0.956i)T \) |
| 3 | \( 1 + (0.0980 + 0.995i)T \) |
| 5 | \( 1 + (-0.881 - 0.471i)T \) |
good | 7 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 11 | \( 1 + (0.195 - 0.980i)T^{2} \) |
| 13 | \( 1 + (0.555 - 0.831i)T^{2} \) |
| 17 | \( 1 + (-0.360 - 0.871i)T + (-0.707 + 0.707i)T^{2} \) |
| 19 | \( 1 + (-0.448 + 1.47i)T + (-0.831 - 0.555i)T^{2} \) |
| 23 | \( 1 + (-1.59 - 1.06i)T + (0.382 + 0.923i)T^{2} \) |
| 29 | \( 1 + (-0.195 - 0.980i)T^{2} \) |
| 31 | \( 1 + (1.17 + 1.17i)T + iT^{2} \) |
| 37 | \( 1 + (-0.831 + 0.555i)T^{2} \) |
| 41 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 43 | \( 1 + (0.980 + 0.195i)T^{2} \) |
| 47 | \( 1 + (-1.83 + 0.761i)T + (0.707 - 0.707i)T^{2} \) |
| 53 | \( 1 + (-0.301 + 0.247i)T + (0.195 - 0.980i)T^{2} \) |
| 59 | \( 1 + (0.555 + 0.831i)T^{2} \) |
| 61 | \( 1 + (-1.26 + 0.124i)T + (0.980 - 0.195i)T^{2} \) |
| 67 | \( 1 + (-0.980 + 0.195i)T^{2} \) |
| 71 | \( 1 + (-0.923 - 0.382i)T^{2} \) |
| 73 | \( 1 + (0.923 - 0.382i)T^{2} \) |
| 79 | \( 1 + (-0.707 - 0.292i)T + (0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + (1.87 + 0.569i)T + (0.831 + 0.555i)T^{2} \) |
| 89 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 97 | \( 1 - iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.163933745373036149093871193706, −8.677061245747683996535880742050, −7.50846344472881775201866301683, −7.16203717701029736901789038156, −6.40565218644316870527369658182, −5.60524600912997447131616002552, −5.11722866394464969010825842335, −3.54826147450151661954165612300, −2.30776179858977917781816227474, −1.13497901164359435096039850187,
1.18460624136507505350009319289, 2.55225176479048293361818252346, 3.35868147002420190777648456915, 4.39673322907077775785415046406, 5.16859284503079845222837618126, 5.73620210111394689392220766630, 7.08244962936253591615489374387, 8.240194235697336982575661041314, 8.943035410316241211890130633184, 9.425711979736080864640419452248