L(s) = 1 | + (−0.0980 + 0.995i)2-s + (0.881 + 0.471i)3-s + (−0.980 − 0.195i)4-s + (0.634 − 0.773i)5-s + (−0.555 + 0.831i)6-s + (0.290 − 0.956i)8-s + (0.555 + 0.831i)9-s + (0.707 + 0.707i)10-s + (−0.773 − 0.634i)12-s + (0.923 − 0.382i)15-s + (0.923 + 0.382i)16-s + (1.42 + 0.591i)17-s + (−0.881 + 0.471i)18-s + (0.0569 − 0.577i)19-s + (−0.773 + 0.634i)20-s + ⋯ |
L(s) = 1 | + (−0.0980 + 0.995i)2-s + (0.881 + 0.471i)3-s + (−0.980 − 0.195i)4-s + (0.634 − 0.773i)5-s + (−0.555 + 0.831i)6-s + (0.290 − 0.956i)8-s + (0.555 + 0.831i)9-s + (0.707 + 0.707i)10-s + (−0.773 − 0.634i)12-s + (0.923 − 0.382i)15-s + (0.923 + 0.382i)16-s + (1.42 + 0.591i)17-s + (−0.881 + 0.471i)18-s + (0.0569 − 0.577i)19-s + (−0.773 + 0.634i)20-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.336 - 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1920 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.336 - 0.941i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.534153825\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.534153825\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.0980 - 0.995i)T \) |
| 3 | \( 1 + (-0.881 - 0.471i)T \) |
| 5 | \( 1 + (-0.634 + 0.773i)T \) |
good | 7 | \( 1 + (-0.382 - 0.923i)T^{2} \) |
| 11 | \( 1 + (-0.831 - 0.555i)T^{2} \) |
| 13 | \( 1 + (-0.195 + 0.980i)T^{2} \) |
| 17 | \( 1 + (-1.42 - 0.591i)T + (0.707 + 0.707i)T^{2} \) |
| 19 | \( 1 + (-0.0569 + 0.577i)T + (-0.980 - 0.195i)T^{2} \) |
| 23 | \( 1 + (1.95 + 0.388i)T + (0.923 + 0.382i)T^{2} \) |
| 29 | \( 1 + (0.831 - 0.555i)T^{2} \) |
| 31 | \( 1 + (-1.38 + 1.38i)T - iT^{2} \) |
| 37 | \( 1 + (-0.980 + 0.195i)T^{2} \) |
| 41 | \( 1 + (0.923 + 0.382i)T^{2} \) |
| 43 | \( 1 + (-0.555 + 0.831i)T^{2} \) |
| 47 | \( 1 + (0.360 - 0.871i)T + (-0.707 - 0.707i)T^{2} \) |
| 53 | \( 1 + (0.482 - 1.59i)T + (-0.831 - 0.555i)T^{2} \) |
| 59 | \( 1 + (-0.195 - 0.980i)T^{2} \) |
| 61 | \( 1 + (0.902 - 1.68i)T + (-0.555 - 0.831i)T^{2} \) |
| 67 | \( 1 + (0.555 + 0.831i)T^{2} \) |
| 71 | \( 1 + (0.382 + 0.923i)T^{2} \) |
| 73 | \( 1 + (-0.382 + 0.923i)T^{2} \) |
| 79 | \( 1 + (0.707 + 1.70i)T + (-0.707 + 0.707i)T^{2} \) |
| 83 | \( 1 + (1.10 + 0.108i)T + (0.980 + 0.195i)T^{2} \) |
| 89 | \( 1 + (-0.923 + 0.382i)T^{2} \) |
| 97 | \( 1 + iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.432368360249981925513530863793, −8.673267742896213492070808892650, −7.999172403049501871719324969754, −7.54637381408742789366181124709, −6.13678851011703757313682903722, −5.73827498125706631555425105777, −4.55493480367973433229476209756, −4.15234568086816841321835889626, −2.80814472448383068038664529769, −1.41310141165737786345959094492,
1.42449204432030177266256087033, 2.27584919086735991163549378568, 3.22035348753197686404053804461, 3.75290717227223949467603968902, 5.11282173526076216748669919564, 6.06628392049662501716518513920, 7.03306124024960230859373740602, 7.969510256386482598574130056170, 8.407055011474932138125602031238, 9.613837840037194537662451454947