L(s) = 1 | + (−0.0980 + 0.995i)2-s + (0.881 + 0.471i)3-s + (−0.980 − 0.195i)4-s + (0.634 − 0.773i)5-s + (−0.555 + 0.831i)6-s + (0.290 − 0.956i)8-s + (0.555 + 0.831i)9-s + (0.707 + 0.707i)10-s + (−0.773 − 0.634i)12-s + (0.923 − 0.382i)15-s + (0.923 + 0.382i)16-s + (1.42 + 0.591i)17-s + (−0.881 + 0.471i)18-s + (0.0569 − 0.577i)19-s + (−0.773 + 0.634i)20-s + ⋯ |
L(s) = 1 | + (−0.0980 + 0.995i)2-s + (0.881 + 0.471i)3-s + (−0.980 − 0.195i)4-s + (0.634 − 0.773i)5-s + (−0.555 + 0.831i)6-s + (0.290 − 0.956i)8-s + (0.555 + 0.831i)9-s + (0.707 + 0.707i)10-s + (−0.773 − 0.634i)12-s + (0.923 − 0.382i)15-s + (0.923 + 0.382i)16-s + (1.42 + 0.591i)17-s + (−0.881 + 0.471i)18-s + (0.0569 − 0.577i)19-s + (−0.773 + 0.634i)20-s + ⋯ |
Λ(s)=(=(1920s/2ΓC(s)L(s)(0.336−0.941i)Λ(1−s)
Λ(s)=(=(1920s/2ΓC(s)L(s)(0.336−0.941i)Λ(1−s)
Degree: |
2 |
Conductor: |
1920
= 27⋅3⋅5
|
Sign: |
0.336−0.941i
|
Analytic conductor: |
0.958204 |
Root analytic conductor: |
0.978879 |
Motivic weight: |
0 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ1920(749,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 1920, ( :0), 0.336−0.941i)
|
Particular Values
L(21) |
≈ |
1.534153825 |
L(21) |
≈ |
1.534153825 |
L(1) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 2 | 1+(0.0980−0.995i)T |
| 3 | 1+(−0.881−0.471i)T |
| 5 | 1+(−0.634+0.773i)T |
good | 7 | 1+(−0.382−0.923i)T2 |
| 11 | 1+(−0.831−0.555i)T2 |
| 13 | 1+(−0.195+0.980i)T2 |
| 17 | 1+(−1.42−0.591i)T+(0.707+0.707i)T2 |
| 19 | 1+(−0.0569+0.577i)T+(−0.980−0.195i)T2 |
| 23 | 1+(1.95+0.388i)T+(0.923+0.382i)T2 |
| 29 | 1+(0.831−0.555i)T2 |
| 31 | 1+(−1.38+1.38i)T−iT2 |
| 37 | 1+(−0.980+0.195i)T2 |
| 41 | 1+(0.923+0.382i)T2 |
| 43 | 1+(−0.555+0.831i)T2 |
| 47 | 1+(0.360−0.871i)T+(−0.707−0.707i)T2 |
| 53 | 1+(0.482−1.59i)T+(−0.831−0.555i)T2 |
| 59 | 1+(−0.195−0.980i)T2 |
| 61 | 1+(0.902−1.68i)T+(−0.555−0.831i)T2 |
| 67 | 1+(0.555+0.831i)T2 |
| 71 | 1+(0.382+0.923i)T2 |
| 73 | 1+(−0.382+0.923i)T2 |
| 79 | 1+(0.707+1.70i)T+(−0.707+0.707i)T2 |
| 83 | 1+(1.10+0.108i)T+(0.980+0.195i)T2 |
| 89 | 1+(−0.923+0.382i)T2 |
| 97 | 1+iT2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−9.432368360249981925513530863793, −8.673267742896213492070808892650, −7.999172403049501871719324969754, −7.54637381408742789366181124709, −6.13678851011703757313682903722, −5.73827498125706631555425105777, −4.55493480367973433229476209756, −4.15234568086816841321835889626, −2.80814472448383068038664529769, −1.41310141165737786345959094492,
1.42449204432030177266256087033, 2.27584919086735991163549378568, 3.22035348753197686404053804461, 3.75290717227223949467603968902, 5.11282173526076216748669919564, 6.06628392049662501716518513920, 7.03306124024960230859373740602, 7.969510256386482598574130056170, 8.407055011474932138125602031238, 9.613837840037194537662451454947