L(s) = 1 | + (0.198 − 0.0646i)2-s + (−0.773 + 0.562i)4-s + (−0.587 − 0.809i)7-s + (−0.240 + 0.330i)8-s + (−0.309 − 0.951i)9-s + (0.669 + 0.743i)11-s + (−0.169 − 0.122i)14-s + (0.269 − 0.828i)16-s + (−0.122 − 0.169i)18-s + (0.181 + 0.104i)22-s − 1.82i·23-s + (0.909 + 0.295i)28-s + (1.08 − 0.786i)29-s − 0.591i·32-s + (0.773 + 0.562i)36-s + (0.122 + 0.169i)37-s + ⋯ |
L(s) = 1 | + (0.198 − 0.0646i)2-s + (−0.773 + 0.562i)4-s + (−0.587 − 0.809i)7-s + (−0.240 + 0.330i)8-s + (−0.309 − 0.951i)9-s + (0.669 + 0.743i)11-s + (−0.169 − 0.122i)14-s + (0.269 − 0.828i)16-s + (−0.122 − 0.169i)18-s + (0.181 + 0.104i)22-s − 1.82i·23-s + (0.909 + 0.295i)28-s + (1.08 − 0.786i)29-s − 0.591i·32-s + (0.773 + 0.562i)36-s + (0.122 + 0.169i)37-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.499 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.499 + 0.866i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(0.8792844607\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.8792844607\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (0.587 + 0.809i)T \) |
| 11 | \( 1 + (-0.669 - 0.743i)T \) |
good | 2 | \( 1 + (-0.198 + 0.0646i)T + (0.809 - 0.587i)T^{2} \) |
| 3 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 13 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 17 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 19 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 23 | \( 1 + 1.82iT - T^{2} \) |
| 29 | \( 1 + (-1.08 + 0.786i)T + (0.309 - 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 - 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.122 - 0.169i)T + (-0.309 + 0.951i)T^{2} \) |
| 41 | \( 1 + (-0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + 1.33iT - T^{2} \) |
| 47 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 53 | \( 1 + (-0.587 + 0.190i)T + (0.809 - 0.587i)T^{2} \) |
| 59 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + 1.95iT - T^{2} \) |
| 71 | \( 1 + (-0.413 + 1.27i)T + (-0.809 - 0.587i)T^{2} \) |
| 73 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 79 | \( 1 + (-0.604 - 1.86i)T + (-0.809 + 0.587i)T^{2} \) |
| 83 | \( 1 + (-0.809 - 0.587i)T^{2} \) |
| 89 | \( 1 - T^{2} \) |
| 97 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.245708538464342015500863164242, −8.589945510889122568456453547020, −7.74319281504669500854283618916, −6.74342719731948375050232462587, −6.31487932982232760291827582631, −4.96899314254969428091012642950, −4.17222988241712658431952976575, −3.61761555929739279722903931553, −2.56494106290740398511844325094, −0.67557532892651238843157288527,
1.39556226581192290970570505601, 2.81717550655938838123495958033, 3.71964849759041430748556537511, 4.79990855637797752916535910396, 5.58794035658278504016411438086, 6.04625680265722287079801895403, 7.06327385231331898663213444997, 8.215520911855402830929187212531, 8.774412438462872102548156985823, 9.472117122158326907853625062363