L(s) = 1 | + (1.16 + 0.183i)3-s + (0.587 − 0.809i)4-s + (0.156 + 0.987i)7-s + (0.363 + 0.118i)9-s + (−0.309 + 0.951i)11-s + (0.831 − 0.831i)12-s + (0.734 + 1.44i)13-s + (−0.309 − 0.951i)16-s + (0.280 − 0.550i)17-s + 1.17i·21-s + (−0.647 − 0.329i)27-s + (0.891 + 0.453i)28-s + (−1.53 − 1.11i)29-s + (−0.533 + 1.04i)33-s + (0.309 − 0.224i)36-s + ⋯ |
L(s) = 1 | + (1.16 + 0.183i)3-s + (0.587 − 0.809i)4-s + (0.156 + 0.987i)7-s + (0.363 + 0.118i)9-s + (−0.309 + 0.951i)11-s + (0.831 − 0.831i)12-s + (0.734 + 1.44i)13-s + (−0.309 − 0.951i)16-s + (0.280 − 0.550i)17-s + 1.17i·21-s + (−0.647 − 0.329i)27-s + (0.891 + 0.453i)28-s + (−1.53 − 1.11i)29-s + (−0.533 + 1.04i)33-s + (0.309 − 0.224i)36-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.208i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1925 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.978 - 0.208i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.897202851\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.897202851\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 5 | \( 1 \) |
| 7 | \( 1 + (-0.156 - 0.987i)T \) |
| 11 | \( 1 + (0.309 - 0.951i)T \) |
good | 2 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 3 | \( 1 + (-1.16 - 0.183i)T + (0.951 + 0.309i)T^{2} \) |
| 13 | \( 1 + (-0.734 - 1.44i)T + (-0.587 + 0.809i)T^{2} \) |
| 17 | \( 1 + (-0.280 + 0.550i)T + (-0.587 - 0.809i)T^{2} \) |
| 19 | \( 1 + (-0.309 + 0.951i)T^{2} \) |
| 23 | \( 1 - iT^{2} \) |
| 29 | \( 1 + (1.53 + 1.11i)T + (0.309 + 0.951i)T^{2} \) |
| 31 | \( 1 + (0.809 + 0.587i)T^{2} \) |
| 37 | \( 1 + (-0.951 + 0.309i)T^{2} \) |
| 41 | \( 1 + (0.309 - 0.951i)T^{2} \) |
| 43 | \( 1 + iT^{2} \) |
| 47 | \( 1 + (-0.297 + 1.87i)T + (-0.951 - 0.309i)T^{2} \) |
| 53 | \( 1 + (-0.587 + 0.809i)T^{2} \) |
| 59 | \( 1 + (0.309 + 0.951i)T^{2} \) |
| 61 | \( 1 + (-0.809 + 0.587i)T^{2} \) |
| 67 | \( 1 + iT^{2} \) |
| 71 | \( 1 + (0.5 + 1.53i)T + (-0.809 + 0.587i)T^{2} \) |
| 73 | \( 1 + (0.610 - 0.0966i)T + (0.951 - 0.309i)T^{2} \) |
| 79 | \( 1 + (-0.363 + 1.11i)T + (-0.809 - 0.587i)T^{2} \) |
| 83 | \( 1 + (-1.44 - 0.734i)T + (0.587 + 0.809i)T^{2} \) |
| 89 | \( 1 + T^{2} \) |
| 97 | \( 1 + (-0.863 - 1.69i)T + (-0.587 + 0.809i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.351987838397067079096636722616, −8.873052170088508302341441634452, −7.892348425511757578957860005908, −7.14068651283221657079679632624, −6.23889608203218817186791074530, −5.45227399113869253560332919903, −4.48488835424899308263596296855, −3.41553740409049682800941933697, −2.21692622483491222058844665062, −1.93136434957506522467911336965,
1.43005586916215006319373486114, 2.76491654558222176374735511132, 3.39376568543135903939655598336, 3.92384761683630441541232026528, 5.44717324235561878876024836055, 6.31354374691960670681547488820, 7.49737671001327636076352551544, 7.74276262730874339510677640702, 8.428076123159130869218717001745, 9.017443715861773739854758864622