Properties

Label 2-195-1.1-c5-0-13
Degree $2$
Conductor $195$
Sign $1$
Analytic cond. $31.2748$
Root an. cond. $5.59239$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6.53·2-s + 9·3-s + 10.6·4-s − 25·5-s − 58.8·6-s + 229.·7-s + 139.·8-s + 81·9-s + 163.·10-s + 284.·11-s + 96.2·12-s − 169·13-s − 1.49e3·14-s − 225·15-s − 1.25e3·16-s + 1.58e3·17-s − 529.·18-s − 2.17e3·19-s − 267.·20-s + 2.06e3·21-s − 1.85e3·22-s + 1.12e3·23-s + 1.25e3·24-s + 625·25-s + 1.10e3·26-s + 729·27-s + 2.44e3·28-s + ⋯
L(s)  = 1  − 1.15·2-s + 0.577·3-s + 0.334·4-s − 0.447·5-s − 0.666·6-s + 1.76·7-s + 0.769·8-s + 0.333·9-s + 0.516·10-s + 0.708·11-s + 0.192·12-s − 0.277·13-s − 2.04·14-s − 0.258·15-s − 1.22·16-s + 1.32·17-s − 0.385·18-s − 1.38·19-s − 0.149·20-s + 1.01·21-s − 0.818·22-s + 0.444·23-s + 0.444·24-s + 0.200·25-s + 0.320·26-s + 0.192·27-s + 0.590·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(195\)    =    \(3 \cdot 5 \cdot 13\)
Sign: $1$
Analytic conductor: \(31.2748\)
Root analytic conductor: \(5.59239\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 195,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.522192229\)
\(L(\frac12)\) \(\approx\) \(1.522192229\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
5 \( 1 + 25T \)
13 \( 1 + 169T \)
good2 \( 1 + 6.53T + 32T^{2} \)
7 \( 1 - 229.T + 1.68e4T^{2} \)
11 \( 1 - 284.T + 1.61e5T^{2} \)
17 \( 1 - 1.58e3T + 1.41e6T^{2} \)
19 \( 1 + 2.17e3T + 2.47e6T^{2} \)
23 \( 1 - 1.12e3T + 6.43e6T^{2} \)
29 \( 1 - 1.54e3T + 2.05e7T^{2} \)
31 \( 1 + 3.76e3T + 2.86e7T^{2} \)
37 \( 1 - 7.40e3T + 6.93e7T^{2} \)
41 \( 1 + 1.04e4T + 1.15e8T^{2} \)
43 \( 1 + 4.09e3T + 1.47e8T^{2} \)
47 \( 1 + 4.37e3T + 2.29e8T^{2} \)
53 \( 1 - 2.70e4T + 4.18e8T^{2} \)
59 \( 1 - 2.90e4T + 7.14e8T^{2} \)
61 \( 1 + 4.18e4T + 8.44e8T^{2} \)
67 \( 1 - 3.28e4T + 1.35e9T^{2} \)
71 \( 1 - 6.94e4T + 1.80e9T^{2} \)
73 \( 1 - 6.07e4T + 2.07e9T^{2} \)
79 \( 1 - 4.43e4T + 3.07e9T^{2} \)
83 \( 1 - 4.76e3T + 3.93e9T^{2} \)
89 \( 1 - 4.57e4T + 5.58e9T^{2} \)
97 \( 1 + 1.66e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.32952578594256432972320943534, −10.53985567168061452565547128906, −9.437630493872892147972184468424, −8.398799374891618187844901138770, −8.039365078772438658627480418585, −7.01848904783579682512590348488, −5.03254307490986481327045238858, −3.98892755298893769311121505235, −2.00060033565779870236323301538, −0.957867069670270083209848156613, 0.957867069670270083209848156613, 2.00060033565779870236323301538, 3.98892755298893769311121505235, 5.03254307490986481327045238858, 7.01848904783579682512590348488, 8.039365078772438658627480418585, 8.398799374891618187844901138770, 9.437630493872892147972184468424, 10.53985567168061452565547128906, 11.32952578594256432972320943534

Graph of the $Z$-function along the critical line