L(s) = 1 | − 9.14·2-s + 9·3-s + 51.6·4-s − 25·5-s − 82.3·6-s + 24.2·7-s − 180.·8-s + 81·9-s + 228.·10-s − 126.·11-s + 465.·12-s + 169·13-s − 221.·14-s − 225·15-s − 6.48·16-s − 912.·17-s − 740.·18-s + 507.·19-s − 1.29e3·20-s + 217.·21-s + 1.15e3·22-s − 1.47e3·23-s − 1.62e3·24-s + 625·25-s − 1.54e3·26-s + 729·27-s + 1.25e3·28-s + ⋯ |
L(s) = 1 | − 1.61·2-s + 0.577·3-s + 1.61·4-s − 0.447·5-s − 0.933·6-s + 0.186·7-s − 0.994·8-s + 0.333·9-s + 0.723·10-s − 0.315·11-s + 0.932·12-s + 0.277·13-s − 0.301·14-s − 0.258·15-s − 0.00633·16-s − 0.766·17-s − 0.539·18-s + 0.322·19-s − 0.722·20-s + 0.107·21-s + 0.509·22-s − 0.581·23-s − 0.574·24-s + 0.200·25-s − 0.448·26-s + 0.192·27-s + 0.301·28-s + ⋯ |
Λ(s)=(=(195s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(195s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−9T |
| 5 | 1+25T |
| 13 | 1−169T |
good | 2 | 1+9.14T+32T2 |
| 7 | 1−24.2T+1.68e4T2 |
| 11 | 1+126.T+1.61e5T2 |
| 17 | 1+912.T+1.41e6T2 |
| 19 | 1−507.T+2.47e6T2 |
| 23 | 1+1.47e3T+6.43e6T2 |
| 29 | 1+315.T+2.05e7T2 |
| 31 | 1−3.16e3T+2.86e7T2 |
| 37 | 1−1.46e4T+6.93e7T2 |
| 41 | 1+3.92e3T+1.15e8T2 |
| 43 | 1+1.15e3T+1.47e8T2 |
| 47 | 1−4.33e3T+2.29e8T2 |
| 53 | 1+2.54e4T+4.18e8T2 |
| 59 | 1+3.23e4T+7.14e8T2 |
| 61 | 1+2.87e4T+8.44e8T2 |
| 67 | 1−5.11e3T+1.35e9T2 |
| 71 | 1+4.82e4T+1.80e9T2 |
| 73 | 1−9.88e3T+2.07e9T2 |
| 79 | 1+6.96e4T+3.07e9T2 |
| 83 | 1+3.67e4T+3.93e9T2 |
| 89 | 1+4.83e4T+5.58e9T2 |
| 97 | 1+8.05e4T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.89225509197496627266135567447, −9.910348416505816484392011584798, −9.056503678323827864141931705861, −8.162551415726364481742470069843, −7.56024605628931994926660008009, −6.37099027776451040979764123981, −4.44424678719721967154390018106, −2.78228297888674052298435819864, −1.44711984119799416649266218933, 0,
1.44711984119799416649266218933, 2.78228297888674052298435819864, 4.44424678719721967154390018106, 6.37099027776451040979764123981, 7.56024605628931994926660008009, 8.162551415726364481742470069843, 9.056503678323827864141931705861, 9.910348416505816484392011584798, 10.89225509197496627266135567447