L(s) = 1 | − 10.1·2-s + 9·3-s + 71.2·4-s + 25·5-s − 91.4·6-s + 177.·7-s − 399.·8-s + 81·9-s − 254.·10-s − 242.·11-s + 641.·12-s − 169·13-s − 1.80e3·14-s + 225·15-s + 1.77e3·16-s − 2.15e3·17-s − 823.·18-s − 2.44e3·19-s + 1.78e3·20-s + 1.59e3·21-s + 2.46e3·22-s − 2.31e3·23-s − 3.59e3·24-s + 625·25-s + 1.71e3·26-s + 729·27-s + 1.26e4·28-s + ⋯ |
L(s) = 1 | − 1.79·2-s + 0.577·3-s + 2.22·4-s + 0.447·5-s − 1.03·6-s + 1.36·7-s − 2.20·8-s + 0.333·9-s − 0.803·10-s − 0.604·11-s + 1.28·12-s − 0.277·13-s − 2.45·14-s + 0.258·15-s + 1.73·16-s − 1.80·17-s − 0.598·18-s − 1.55·19-s + 0.996·20-s + 0.789·21-s + 1.08·22-s − 0.913·23-s − 1.27·24-s + 0.200·25-s + 0.498·26-s + 0.192·27-s + 3.04·28-s + ⋯ |
Λ(s)=(=(195s/2ΓC(s)L(s)−Λ(6−s)
Λ(s)=(=(195s/2ΓC(s+5/2)L(s)−Λ(1−s)
Particular Values
L(3) |
= |
0 |
L(21) |
= |
0 |
L(27) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 3 | 1−9T |
| 5 | 1−25T |
| 13 | 1+169T |
good | 2 | 1+10.1T+32T2 |
| 7 | 1−177.T+1.68e4T2 |
| 11 | 1+242.T+1.61e5T2 |
| 17 | 1+2.15e3T+1.41e6T2 |
| 19 | 1+2.44e3T+2.47e6T2 |
| 23 | 1+2.31e3T+6.43e6T2 |
| 29 | 1−550.T+2.05e7T2 |
| 31 | 1−1.68e3T+2.86e7T2 |
| 37 | 1+9.96e3T+6.93e7T2 |
| 41 | 1+3.86e3T+1.15e8T2 |
| 43 | 1−1.15e4T+1.47e8T2 |
| 47 | 1+1.98e4T+2.29e8T2 |
| 53 | 1+7.57e3T+4.18e8T2 |
| 59 | 1−2.03e3T+7.14e8T2 |
| 61 | 1−3.08e4T+8.44e8T2 |
| 67 | 1+4.64e4T+1.35e9T2 |
| 71 | 1−2.42e3T+1.80e9T2 |
| 73 | 1+7.42e4T+2.07e9T2 |
| 79 | 1−7.18e4T+3.07e9T2 |
| 83 | 1+6.94e4T+3.93e9T2 |
| 89 | 1+6.32e4T+5.58e9T2 |
| 97 | 1−1.37e5T+8.58e9T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−10.76019327914351845726276339339, −10.09476970092954004458432378741, −8.808389236938870029138926531982, −8.442528139930943302911173233562, −7.47097419004719226147916187528, −6.37714676921522357119539044271, −4.61264535085130128486391072591, −2.33886415484967366231048390978, −1.75760940851970976289839247184, 0,
1.75760940851970976289839247184, 2.33886415484967366231048390978, 4.61264535085130128486391072591, 6.37714676921522357119539044271, 7.47097419004719226147916187528, 8.442528139930943302911173233562, 8.808389236938870029138926531982, 10.09476970092954004458432378741, 10.76019327914351845726276339339