Properties

Label 2-195-1.1-c5-0-34
Degree $2$
Conductor $195$
Sign $-1$
Analytic cond. $31.2748$
Root an. cond. $5.59239$
Motivic weight $5$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10.1·2-s + 9·3-s + 71.2·4-s + 25·5-s − 91.4·6-s + 177.·7-s − 399.·8-s + 81·9-s − 254.·10-s − 242.·11-s + 641.·12-s − 169·13-s − 1.80e3·14-s + 225·15-s + 1.77e3·16-s − 2.15e3·17-s − 823.·18-s − 2.44e3·19-s + 1.78e3·20-s + 1.59e3·21-s + 2.46e3·22-s − 2.31e3·23-s − 3.59e3·24-s + 625·25-s + 1.71e3·26-s + 729·27-s + 1.26e4·28-s + ⋯
L(s)  = 1  − 1.79·2-s + 0.577·3-s + 2.22·4-s + 0.447·5-s − 1.03·6-s + 1.36·7-s − 2.20·8-s + 0.333·9-s − 0.803·10-s − 0.604·11-s + 1.28·12-s − 0.277·13-s − 2.45·14-s + 0.258·15-s + 1.73·16-s − 1.80·17-s − 0.598·18-s − 1.55·19-s + 0.996·20-s + 0.789·21-s + 1.08·22-s − 0.913·23-s − 1.27·24-s + 0.200·25-s + 0.498·26-s + 0.192·27-s + 3.04·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 195 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(195\)    =    \(3 \cdot 5 \cdot 13\)
Sign: $-1$
Analytic conductor: \(31.2748\)
Root analytic conductor: \(5.59239\)
Motivic weight: \(5\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 195,\ (\ :5/2),\ -1)\)

Particular Values

\(L(3)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 - 9T \)
5 \( 1 - 25T \)
13 \( 1 + 169T \)
good2 \( 1 + 10.1T + 32T^{2} \)
7 \( 1 - 177.T + 1.68e4T^{2} \)
11 \( 1 + 242.T + 1.61e5T^{2} \)
17 \( 1 + 2.15e3T + 1.41e6T^{2} \)
19 \( 1 + 2.44e3T + 2.47e6T^{2} \)
23 \( 1 + 2.31e3T + 6.43e6T^{2} \)
29 \( 1 - 550.T + 2.05e7T^{2} \)
31 \( 1 - 1.68e3T + 2.86e7T^{2} \)
37 \( 1 + 9.96e3T + 6.93e7T^{2} \)
41 \( 1 + 3.86e3T + 1.15e8T^{2} \)
43 \( 1 - 1.15e4T + 1.47e8T^{2} \)
47 \( 1 + 1.98e4T + 2.29e8T^{2} \)
53 \( 1 + 7.57e3T + 4.18e8T^{2} \)
59 \( 1 - 2.03e3T + 7.14e8T^{2} \)
61 \( 1 - 3.08e4T + 8.44e8T^{2} \)
67 \( 1 + 4.64e4T + 1.35e9T^{2} \)
71 \( 1 - 2.42e3T + 1.80e9T^{2} \)
73 \( 1 + 7.42e4T + 2.07e9T^{2} \)
79 \( 1 - 7.18e4T + 3.07e9T^{2} \)
83 \( 1 + 6.94e4T + 3.93e9T^{2} \)
89 \( 1 + 6.32e4T + 5.58e9T^{2} \)
97 \( 1 - 1.37e5T + 8.58e9T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.76019327914351845726276339339, −10.09476970092954004458432378741, −8.808389236938870029138926531982, −8.442528139930943302911173233562, −7.47097419004719226147916187528, −6.37714676921522357119539044271, −4.61264535085130128486391072591, −2.33886415484967366231048390978, −1.75760940851970976289839247184, 0, 1.75760940851970976289839247184, 2.33886415484967366231048390978, 4.61264535085130128486391072591, 6.37714676921522357119539044271, 7.47097419004719226147916187528, 8.442528139930943302911173233562, 8.808389236938870029138926531982, 10.09476970092954004458432378741, 10.76019327914351845726276339339

Graph of the $Z$-function along the critical line