L(s) = 1 | − 0.530·2-s + 0.899·3-s − 1.71·4-s + 3.03·5-s − 0.476·6-s + 0.743·7-s + 1.97·8-s − 2.19·9-s − 1.60·10-s + 3.91·11-s − 1.54·12-s − 1.48·13-s − 0.394·14-s + 2.72·15-s + 2.39·16-s + 5.45·17-s + 1.16·18-s + 1.78·19-s − 5.21·20-s + 0.668·21-s − 2.07·22-s − 4.14·23-s + 1.77·24-s + 4.19·25-s + 0.787·26-s − 4.66·27-s − 1.27·28-s + ⋯ |
L(s) = 1 | − 0.374·2-s + 0.519·3-s − 0.859·4-s + 1.35·5-s − 0.194·6-s + 0.281·7-s + 0.697·8-s − 0.730·9-s − 0.508·10-s + 1.17·11-s − 0.446·12-s − 0.411·13-s − 0.105·14-s + 0.704·15-s + 0.597·16-s + 1.32·17-s + 0.273·18-s + 0.409·19-s − 1.16·20-s + 0.145·21-s − 0.442·22-s − 0.863·23-s + 0.361·24-s + 0.838·25-s + 0.154·26-s − 0.898·27-s − 0.241·28-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(197s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
1.208091814 |
L(21) |
≈ |
1.208091814 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1−T |
good | 2 | 1+0.530T+2T2 |
| 3 | 1−0.899T+3T2 |
| 5 | 1−3.03T+5T2 |
| 7 | 1−0.743T+7T2 |
| 11 | 1−3.91T+11T2 |
| 13 | 1+1.48T+13T2 |
| 17 | 1−5.45T+17T2 |
| 19 | 1−1.78T+19T2 |
| 23 | 1+4.14T+23T2 |
| 29 | 1+4.67T+29T2 |
| 31 | 1+0.723T+31T2 |
| 37 | 1+0.460T+37T2 |
| 41 | 1+6.33T+41T2 |
| 43 | 1−0.907T+43T2 |
| 47 | 1+2.75T+47T2 |
| 53 | 1+11.7T+53T2 |
| 59 | 1−1.19T+59T2 |
| 61 | 1−5.55T+61T2 |
| 67 | 1+1.92T+67T2 |
| 71 | 1−12.9T+71T2 |
| 73 | 1+13.5T+73T2 |
| 79 | 1−6.59T+79T2 |
| 83 | 1+2.20T+83T2 |
| 89 | 1+5.90T+89T2 |
| 97 | 1−17.7T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.65236875114677382241127525525, −11.48774094126597515522097754254, −9.995436354886708022464939945429, −9.563797734390071901165869257566, −8.705504178036617020568536648820, −7.70077236295669609096332332748, −6.08267796047963842289649758594, −5.13145926464621747028654331750, −3.50951263376479321404567945896, −1.69597385220128136931077491004,
1.69597385220128136931077491004, 3.50951263376479321404567945896, 5.13145926464621747028654331750, 6.08267796047963842289649758594, 7.70077236295669609096332332748, 8.705504178036617020568536648820, 9.563797734390071901165869257566, 9.995436354886708022464939945429, 11.48774094126597515522097754254, 12.65236875114677382241127525525