L(s) = 1 | + 0.896·2-s + 3.41·3-s − 1.19·4-s − 0.448·5-s + 3.05·6-s − 2.39·7-s − 2.86·8-s + 8.64·9-s − 0.401·10-s + 3.36·11-s − 4.08·12-s − 3.92·13-s − 2.14·14-s − 1.53·15-s − 0.175·16-s + 0.536·17-s + 7.74·18-s − 3.95·19-s + 0.536·20-s − 8.16·21-s + 3.01·22-s − 5.71·23-s − 9.77·24-s − 4.79·25-s − 3.52·26-s + 19.2·27-s + 2.86·28-s + ⋯ |
L(s) = 1 | + 0.633·2-s + 1.97·3-s − 0.598·4-s − 0.200·5-s + 1.24·6-s − 0.903·7-s − 1.01·8-s + 2.88·9-s − 0.127·10-s + 1.01·11-s − 1.17·12-s − 1.08·13-s − 0.572·14-s − 0.395·15-s − 0.0438·16-s + 0.130·17-s + 1.82·18-s − 0.908·19-s + 0.119·20-s − 1.78·21-s + 0.642·22-s − 1.19·23-s − 1.99·24-s − 0.959·25-s − 0.690·26-s + 3.70·27-s + 0.540·28-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)Λ(2−s)
Λ(s)=(=(197s/2ΓC(s+1/2)L(s)Λ(1−s)
Particular Values
L(1) |
≈ |
2.171149165 |
L(21) |
≈ |
2.171149165 |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1−T |
good | 2 | 1−0.896T+2T2 |
| 3 | 1−3.41T+3T2 |
| 5 | 1+0.448T+5T2 |
| 7 | 1+2.39T+7T2 |
| 11 | 1−3.36T+11T2 |
| 13 | 1+3.92T+13T2 |
| 17 | 1−0.536T+17T2 |
| 19 | 1+3.95T+19T2 |
| 23 | 1+5.71T+23T2 |
| 29 | 1+6.05T+29T2 |
| 31 | 1−6.74T+31T2 |
| 37 | 1−8.96T+37T2 |
| 41 | 1−4.65T+41T2 |
| 43 | 1+2.58T+43T2 |
| 47 | 1−1.84T+47T2 |
| 53 | 1−9.84T+53T2 |
| 59 | 1+4.25T+59T2 |
| 61 | 1+0.391T+61T2 |
| 67 | 1−7.54T+67T2 |
| 71 | 1+8.07T+71T2 |
| 73 | 1−11.2T+73T2 |
| 79 | 1+2.38T+79T2 |
| 83 | 1+1.38T+83T2 |
| 89 | 1+1.54T+89T2 |
| 97 | 1+11.1T+97T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.82957803084216534502116201369, −12.06378931200110123501258261716, −9.848923205750769912872849113672, −9.569164464581891717710623859414, −8.568977710575794230809824739828, −7.60873228653269623285234981291, −6.32527951321528156948281656717, −4.32346730235717361093642779739, −3.71933729323563848878574036472, −2.47236704046632529570457532303,
2.47236704046632529570457532303, 3.71933729323563848878574036472, 4.32346730235717361093642779739, 6.32527951321528156948281656717, 7.60873228653269623285234981291, 8.568977710575794230809824739828, 9.569164464581891717710623859414, 9.848923205750769912872849113672, 12.06378931200110123501258261716, 12.82957803084216534502116201369