L(s) = 1 | + 5.09·2-s − 7.11·3-s + 17.9·4-s + 8.87·5-s − 36.2·6-s − 1.96·7-s + 50.5·8-s + 23.6·9-s + 45.1·10-s + 42.4·11-s − 127.·12-s + 41.5·13-s − 10.0·14-s − 63.1·15-s + 113.·16-s + 12.7·17-s + 120.·18-s + 52.0·19-s + 159.·20-s + 14.0·21-s + 215.·22-s + 43.8·23-s − 359.·24-s − 46.1·25-s + 211.·26-s + 23.9·27-s − 35.2·28-s + ⋯ |
L(s) = 1 | + 1.79·2-s − 1.36·3-s + 2.23·4-s + 0.794·5-s − 2.46·6-s − 0.106·7-s + 2.23·8-s + 0.875·9-s + 1.42·10-s + 1.16·11-s − 3.06·12-s + 0.886·13-s − 0.191·14-s − 1.08·15-s + 1.77·16-s + 0.181·17-s + 1.57·18-s + 0.629·19-s + 1.77·20-s + 0.145·21-s + 2.09·22-s + 0.397·23-s − 3.05·24-s − 0.369·25-s + 1.59·26-s + 0.170·27-s − 0.238·28-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)Λ(4−s)
Λ(s)=(=(197s/2ΓC(s+3/2)L(s)Λ(1−s)
Particular Values
L(2) |
≈ |
3.923114489 |
L(21) |
≈ |
3.923114489 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+197T |
good | 2 | 1−5.09T+8T2 |
| 3 | 1+7.11T+27T2 |
| 5 | 1−8.87T+125T2 |
| 7 | 1+1.96T+343T2 |
| 11 | 1−42.4T+1.33e3T2 |
| 13 | 1−41.5T+2.19e3T2 |
| 17 | 1−12.7T+4.91e3T2 |
| 19 | 1−52.0T+6.85e3T2 |
| 23 | 1−43.8T+1.21e4T2 |
| 29 | 1+233.T+2.43e4T2 |
| 31 | 1−15.4T+2.97e4T2 |
| 37 | 1+215.T+5.06e4T2 |
| 41 | 1−240.T+6.89e4T2 |
| 43 | 1−72.1T+7.95e4T2 |
| 47 | 1−249.T+1.03e5T2 |
| 53 | 1+656.T+1.48e5T2 |
| 59 | 1−282.T+2.05e5T2 |
| 61 | 1+705.T+2.26e5T2 |
| 67 | 1+601.T+3.00e5T2 |
| 71 | 1+839.T+3.57e5T2 |
| 73 | 1−194.T+3.89e5T2 |
| 79 | 1−450.T+4.93e5T2 |
| 83 | 1+156.T+5.71e5T2 |
| 89 | 1−315.T+7.04e5T2 |
| 97 | 1−1.20e3T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.10316267388592749738123433328, −11.40009914109244724409352672778, −10.70797245811444177713983360544, −9.329456048117356419067369345783, −7.18547363262216600523407791236, −6.10318898452810479430865726286, −5.83033384430894628224667883889, −4.68604179011077023694566456704, −3.46347946582898727283669312996, −1.54993107992247367298299613348,
1.54993107992247367298299613348, 3.46347946582898727283669312996, 4.68604179011077023694566456704, 5.83033384430894628224667883889, 6.10318898452810479430865726286, 7.18547363262216600523407791236, 9.329456048117356419067369345783, 10.70797245811444177713983360544, 11.40009914109244724409352672778, 12.10316267388592749738123433328