Properties

Label 2-197-1.1-c3-0-22
Degree $2$
Conductor $197$
Sign $1$
Analytic cond. $11.6233$
Root an. cond. $3.40930$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5.09·2-s − 7.11·3-s + 17.9·4-s + 8.87·5-s − 36.2·6-s − 1.96·7-s + 50.5·8-s + 23.6·9-s + 45.1·10-s + 42.4·11-s − 127.·12-s + 41.5·13-s − 10.0·14-s − 63.1·15-s + 113.·16-s + 12.7·17-s + 120.·18-s + 52.0·19-s + 159.·20-s + 14.0·21-s + 215.·22-s + 43.8·23-s − 359.·24-s − 46.1·25-s + 211.·26-s + 23.9·27-s − 35.2·28-s + ⋯
L(s)  = 1  + 1.79·2-s − 1.36·3-s + 2.23·4-s + 0.794·5-s − 2.46·6-s − 0.106·7-s + 2.23·8-s + 0.875·9-s + 1.42·10-s + 1.16·11-s − 3.06·12-s + 0.886·13-s − 0.191·14-s − 1.08·15-s + 1.77·16-s + 0.181·17-s + 1.57·18-s + 0.629·19-s + 1.77·20-s + 0.145·21-s + 2.09·22-s + 0.397·23-s − 3.05·24-s − 0.369·25-s + 1.59·26-s + 0.170·27-s − 0.238·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $1$
Analytic conductor: \(11.6233\)
Root analytic conductor: \(3.40930\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 197,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(3.923114489\)
\(L(\frac12)\) \(\approx\) \(3.923114489\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 + 197T \)
good2 \( 1 - 5.09T + 8T^{2} \)
3 \( 1 + 7.11T + 27T^{2} \)
5 \( 1 - 8.87T + 125T^{2} \)
7 \( 1 + 1.96T + 343T^{2} \)
11 \( 1 - 42.4T + 1.33e3T^{2} \)
13 \( 1 - 41.5T + 2.19e3T^{2} \)
17 \( 1 - 12.7T + 4.91e3T^{2} \)
19 \( 1 - 52.0T + 6.85e3T^{2} \)
23 \( 1 - 43.8T + 1.21e4T^{2} \)
29 \( 1 + 233.T + 2.43e4T^{2} \)
31 \( 1 - 15.4T + 2.97e4T^{2} \)
37 \( 1 + 215.T + 5.06e4T^{2} \)
41 \( 1 - 240.T + 6.89e4T^{2} \)
43 \( 1 - 72.1T + 7.95e4T^{2} \)
47 \( 1 - 249.T + 1.03e5T^{2} \)
53 \( 1 + 656.T + 1.48e5T^{2} \)
59 \( 1 - 282.T + 2.05e5T^{2} \)
61 \( 1 + 705.T + 2.26e5T^{2} \)
67 \( 1 + 601.T + 3.00e5T^{2} \)
71 \( 1 + 839.T + 3.57e5T^{2} \)
73 \( 1 - 194.T + 3.89e5T^{2} \)
79 \( 1 - 450.T + 4.93e5T^{2} \)
83 \( 1 + 156.T + 5.71e5T^{2} \)
89 \( 1 - 315.T + 7.04e5T^{2} \)
97 \( 1 - 1.20e3T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.10316267388592749738123433328, −11.40009914109244724409352672778, −10.70797245811444177713983360544, −9.329456048117356419067369345783, −7.18547363262216600523407791236, −6.10318898452810479430865726286, −5.83033384430894628224667883889, −4.68604179011077023694566456704, −3.46347946582898727283669312996, −1.54993107992247367298299613348, 1.54993107992247367298299613348, 3.46347946582898727283669312996, 4.68604179011077023694566456704, 5.83033384430894628224667883889, 6.10318898452810479430865726286, 7.18547363262216600523407791236, 9.329456048117356419067369345783, 10.70797245811444177713983360544, 11.40009914109244724409352672778, 12.10316267388592749738123433328

Graph of the $Z$-function along the critical line