Properties

Label 2-197-1.1-c3-0-27
Degree $2$
Conductor $197$
Sign $-1$
Analytic cond. $11.6233$
Root an. cond. $3.40930$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.89·2-s + 1.98·3-s + 15.9·4-s + 3.25·5-s − 9.70·6-s − 2.13·7-s − 38.7·8-s − 23.0·9-s − 15.9·10-s + 26.3·11-s + 31.6·12-s − 70.2·13-s + 10.4·14-s + 6.45·15-s + 62.2·16-s − 23.7·17-s + 112.·18-s + 158.·19-s + 51.8·20-s − 4.23·21-s − 128.·22-s + 62.3·23-s − 76.9·24-s − 114.·25-s + 343.·26-s − 99.3·27-s − 34.0·28-s + ⋯
L(s)  = 1  − 1.72·2-s + 0.381·3-s + 1.99·4-s + 0.290·5-s − 0.660·6-s − 0.115·7-s − 1.71·8-s − 0.854·9-s − 0.503·10-s + 0.722·11-s + 0.760·12-s − 1.49·13-s + 0.199·14-s + 0.111·15-s + 0.973·16-s − 0.338·17-s + 1.47·18-s + 1.91·19-s + 0.579·20-s − 0.0440·21-s − 1.24·22-s + 0.565·23-s − 0.654·24-s − 0.915·25-s + 2.59·26-s − 0.708·27-s − 0.229·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $-1$
Analytic conductor: \(11.6233\)
Root analytic conductor: \(3.40930\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 197,\ (\ :3/2),\ -1)\)

Particular Values

\(L(2)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 - 197T \)
good2 \( 1 + 4.89T + 8T^{2} \)
3 \( 1 - 1.98T + 27T^{2} \)
5 \( 1 - 3.25T + 125T^{2} \)
7 \( 1 + 2.13T + 343T^{2} \)
11 \( 1 - 26.3T + 1.33e3T^{2} \)
13 \( 1 + 70.2T + 2.19e3T^{2} \)
17 \( 1 + 23.7T + 4.91e3T^{2} \)
19 \( 1 - 158.T + 6.85e3T^{2} \)
23 \( 1 - 62.3T + 1.21e4T^{2} \)
29 \( 1 + 110.T + 2.43e4T^{2} \)
31 \( 1 + 56.6T + 2.97e4T^{2} \)
37 \( 1 + 309.T + 5.06e4T^{2} \)
41 \( 1 + 276.T + 6.89e4T^{2} \)
43 \( 1 + 495.T + 7.95e4T^{2} \)
47 \( 1 - 476.T + 1.03e5T^{2} \)
53 \( 1 + 295.T + 1.48e5T^{2} \)
59 \( 1 - 312.T + 2.05e5T^{2} \)
61 \( 1 - 255.T + 2.26e5T^{2} \)
67 \( 1 + 506.T + 3.00e5T^{2} \)
71 \( 1 + 436.T + 3.57e5T^{2} \)
73 \( 1 - 98.6T + 3.89e5T^{2} \)
79 \( 1 + 1.29e3T + 4.93e5T^{2} \)
83 \( 1 - 375.T + 5.71e5T^{2} \)
89 \( 1 + 207.T + 7.04e5T^{2} \)
97 \( 1 + 620.T + 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.44404461715669488493078777560, −10.09732965202947921549617072595, −9.476499311028062406321314335426, −8.755396691541534178916390137699, −7.64397803957944869428042817796, −6.87727336367694148282085811071, −5.38747698774695401012059218893, −3.10490795438607312113733698086, −1.77105108203841484372099299426, 0, 1.77105108203841484372099299426, 3.10490795438607312113733698086, 5.38747698774695401012059218893, 6.87727336367694148282085811071, 7.64397803957944869428042817796, 8.755396691541534178916390137699, 9.476499311028062406321314335426, 10.09732965202947921549617072595, 11.44404461715669488493078777560

Graph of the $Z$-function along the critical line