L(s) = 1 | + 2.32·2-s + 6.85·3-s − 2.61·4-s − 20.6·5-s + 15.9·6-s − 15.9·7-s − 24.6·8-s + 20.0·9-s − 47.9·10-s − 0.680·11-s − 17.9·12-s + 45.4·13-s − 37.0·14-s − 141.·15-s − 36.2·16-s − 51.0·17-s + 46.5·18-s − 104.·19-s + 54.0·20-s − 109.·21-s − 1.57·22-s + 41.2·23-s − 168.·24-s + 301.·25-s + 105.·26-s − 47.6·27-s + 41.7·28-s + ⋯ |
L(s) = 1 | + 0.820·2-s + 1.32·3-s − 0.326·4-s − 1.84·5-s + 1.08·6-s − 0.861·7-s − 1.08·8-s + 0.742·9-s − 1.51·10-s − 0.0186·11-s − 0.431·12-s + 0.968·13-s − 0.706·14-s − 2.43·15-s − 0.566·16-s − 0.728·17-s + 0.609·18-s − 1.25·19-s + 0.604·20-s − 1.13·21-s − 0.0153·22-s + 0.374·23-s − 1.43·24-s + 2.41·25-s + 0.794·26-s − 0.339·27-s + 0.281·28-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)−Λ(4−s)
Λ(s)=(=(197s/2ΓC(s+3/2)L(s)−Λ(1−s)
Particular Values
L(2) |
= |
0 |
L(21) |
= |
0 |
L(25) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1−197T |
good | 2 | 1−2.32T+8T2 |
| 3 | 1−6.85T+27T2 |
| 5 | 1+20.6T+125T2 |
| 7 | 1+15.9T+343T2 |
| 11 | 1+0.680T+1.33e3T2 |
| 13 | 1−45.4T+2.19e3T2 |
| 17 | 1+51.0T+4.91e3T2 |
| 19 | 1+104.T+6.85e3T2 |
| 23 | 1−41.2T+1.21e4T2 |
| 29 | 1−168.T+2.43e4T2 |
| 31 | 1+336.T+2.97e4T2 |
| 37 | 1−292.T+5.06e4T2 |
| 41 | 1+186.T+6.89e4T2 |
| 43 | 1+34.6T+7.95e4T2 |
| 47 | 1−189.T+1.03e5T2 |
| 53 | 1−416.T+1.48e5T2 |
| 59 | 1+426.T+2.05e5T2 |
| 61 | 1+752.T+2.26e5T2 |
| 67 | 1+690.T+3.00e5T2 |
| 71 | 1+281.T+3.57e5T2 |
| 73 | 1+525.T+3.89e5T2 |
| 79 | 1+24.0T+4.93e5T2 |
| 83 | 1−50.4T+5.71e5T2 |
| 89 | 1−708.T+7.04e5T2 |
| 97 | 1−786.T+9.12e5T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.83870095610078472984003202804, −10.72676311288651598733153512628, −9.006859814760997169539851311158, −8.683616216892366521900576888502, −7.60500414113086035863205162704, −6.34327794211513031411646756482, −4.43787876290347514567084479807, −3.72834790174633590375312635623, −2.96311363415539507575319957422, 0,
2.96311363415539507575319957422, 3.72834790174633590375312635623, 4.43787876290347514567084479807, 6.34327794211513031411646756482, 7.60500414113086035863205162704, 8.683616216892366521900576888502, 9.006859814760997169539851311158, 10.72676311288651598733153512628, 11.83870095610078472984003202804