Properties

Label 2-197-1.1-c9-0-112
Degree $2$
Conductor $197$
Sign $-1$
Analytic cond. $101.462$
Root an. cond. $10.0728$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 15.8·2-s + 174.·3-s − 262.·4-s + 699.·5-s − 2.75e3·6-s − 1.40e3·7-s + 1.22e4·8-s + 1.06e4·9-s − 1.10e4·10-s + 7.56e3·11-s − 4.56e4·12-s − 3.42e4·13-s + 2.21e4·14-s + 1.21e5·15-s − 5.91e4·16-s + 1.64e5·17-s − 1.68e5·18-s − 7.52e5·19-s − 1.83e5·20-s − 2.44e5·21-s − 1.19e5·22-s + 1.17e6·23-s + 2.13e6·24-s − 1.46e6·25-s + 5.41e5·26-s − 1.57e6·27-s + 3.68e5·28-s + ⋯
L(s)  = 1  − 0.698·2-s + 1.24·3-s − 0.512·4-s + 0.500·5-s − 0.867·6-s − 0.221·7-s + 1.05·8-s + 0.540·9-s − 0.349·10-s + 0.155·11-s − 0.635·12-s − 0.332·13-s + 0.154·14-s + 0.621·15-s − 0.225·16-s + 0.478·17-s − 0.377·18-s − 1.32·19-s − 0.256·20-s − 0.274·21-s − 0.108·22-s + 0.878·23-s + 1.31·24-s − 0.749·25-s + 0.232·26-s − 0.570·27-s + 0.113·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $-1$
Analytic conductor: \(101.462\)
Root analytic conductor: \(10.0728\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 197,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 + 1.50e9T \)
good2 \( 1 + 15.8T + 512T^{2} \)
3 \( 1 - 174.T + 1.96e4T^{2} \)
5 \( 1 - 699.T + 1.95e6T^{2} \)
7 \( 1 + 1.40e3T + 4.03e7T^{2} \)
11 \( 1 - 7.56e3T + 2.35e9T^{2} \)
13 \( 1 + 3.42e4T + 1.06e10T^{2} \)
17 \( 1 - 1.64e5T + 1.18e11T^{2} \)
19 \( 1 + 7.52e5T + 3.22e11T^{2} \)
23 \( 1 - 1.17e6T + 1.80e12T^{2} \)
29 \( 1 + 4.17e5T + 1.45e13T^{2} \)
31 \( 1 - 8.13e6T + 2.64e13T^{2} \)
37 \( 1 + 9.65e6T + 1.29e14T^{2} \)
41 \( 1 - 6.73e6T + 3.27e14T^{2} \)
43 \( 1 - 2.62e7T + 5.02e14T^{2} \)
47 \( 1 + 5.33e7T + 1.11e15T^{2} \)
53 \( 1 + 8.72e7T + 3.29e15T^{2} \)
59 \( 1 + 2.63e7T + 8.66e15T^{2} \)
61 \( 1 + 5.15e7T + 1.16e16T^{2} \)
67 \( 1 - 1.16e8T + 2.72e16T^{2} \)
71 \( 1 - 3.39e8T + 4.58e16T^{2} \)
73 \( 1 - 1.71e8T + 5.88e16T^{2} \)
79 \( 1 - 2.60e8T + 1.19e17T^{2} \)
83 \( 1 + 5.23e8T + 1.86e17T^{2} \)
89 \( 1 - 5.99e8T + 3.50e17T^{2} \)
97 \( 1 + 4.49e8T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.841339309138855452192118555702, −9.368282489749752996243535333345, −8.424461730868837304495175202383, −7.80019962453857326600000273760, −6.44624868549961739229909438589, −4.91799142640203072149448999890, −3.72313108132378772953011715936, −2.51196907529283380861395825176, −1.42544825207447634080621965133, 0, 1.42544825207447634080621965133, 2.51196907529283380861395825176, 3.72313108132378772953011715936, 4.91799142640203072149448999890, 6.44624868549961739229909438589, 7.80019962453857326600000273760, 8.424461730868837304495175202383, 9.368282489749752996243535333345, 9.841339309138855452192118555702

Graph of the $Z$-function along the critical line