Properties

Label 2-197-1.1-c9-0-121
Degree $2$
Conductor $197$
Sign $-1$
Analytic cond. $101.462$
Root an. cond. $10.0728$
Motivic weight $9$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 42.9·2-s + 78.7·3-s + 1.33e3·4-s + 2.23e3·5-s − 3.38e3·6-s + 958.·7-s − 3.52e4·8-s − 1.34e4·9-s − 9.60e4·10-s + 3.04e4·11-s + 1.05e5·12-s + 1.60e4·13-s − 4.11e4·14-s + 1.76e5·15-s + 8.33e5·16-s + 5.96e5·17-s + 5.78e5·18-s − 8.34e5·19-s + 2.98e6·20-s + 7.55e4·21-s − 1.30e6·22-s − 1.56e6·23-s − 2.78e6·24-s + 3.04e6·25-s − 6.87e5·26-s − 2.61e6·27-s + 1.27e6·28-s + ⋯
L(s)  = 1  − 1.89·2-s + 0.561·3-s + 2.60·4-s + 1.60·5-s − 1.06·6-s + 0.150·7-s − 3.04·8-s − 0.684·9-s − 3.03·10-s + 0.626·11-s + 1.46·12-s + 0.155·13-s − 0.286·14-s + 0.898·15-s + 3.17·16-s + 1.73·17-s + 1.29·18-s − 1.46·19-s + 4.16·20-s + 0.0847·21-s − 1.18·22-s − 1.16·23-s − 1.71·24-s + 1.56·25-s − 0.295·26-s − 0.946·27-s + 0.393·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(10-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+9/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $-1$
Analytic conductor: \(101.462\)
Root analytic conductor: \(10.0728\)
Motivic weight: \(9\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 197,\ (\ :9/2),\ -1)\)

Particular Values

\(L(5)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{11}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 + 1.50e9T \)
good2 \( 1 + 42.9T + 512T^{2} \)
3 \( 1 - 78.7T + 1.96e4T^{2} \)
5 \( 1 - 2.23e3T + 1.95e6T^{2} \)
7 \( 1 - 958.T + 4.03e7T^{2} \)
11 \( 1 - 3.04e4T + 2.35e9T^{2} \)
13 \( 1 - 1.60e4T + 1.06e10T^{2} \)
17 \( 1 - 5.96e5T + 1.18e11T^{2} \)
19 \( 1 + 8.34e5T + 3.22e11T^{2} \)
23 \( 1 + 1.56e6T + 1.80e12T^{2} \)
29 \( 1 + 6.98e6T + 1.45e13T^{2} \)
31 \( 1 + 1.26e6T + 2.64e13T^{2} \)
37 \( 1 - 1.73e7T + 1.29e14T^{2} \)
41 \( 1 + 3.30e7T + 3.27e14T^{2} \)
43 \( 1 - 7.96e6T + 5.02e14T^{2} \)
47 \( 1 + 5.48e7T + 1.11e15T^{2} \)
53 \( 1 + 4.59e7T + 3.29e15T^{2} \)
59 \( 1 - 1.56e7T + 8.66e15T^{2} \)
61 \( 1 + 3.86e7T + 1.16e16T^{2} \)
67 \( 1 + 2.83e8T + 2.72e16T^{2} \)
71 \( 1 + 1.90e8T + 4.58e16T^{2} \)
73 \( 1 - 2.42e8T + 5.88e16T^{2} \)
79 \( 1 + 5.15e8T + 1.19e17T^{2} \)
83 \( 1 - 5.56e8T + 1.86e17T^{2} \)
89 \( 1 - 2.85e8T + 3.50e17T^{2} \)
97 \( 1 + 1.17e9T + 7.60e17T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.875135698479995131413866252463, −9.454990563538288648450358976992, −8.532123877571841275489350473742, −7.75771880713616963171064615622, −6.36089133557433209159598559979, −5.77228250048644339424154430785, −3.21058126782501590355509344343, −2.00464481284006761161317912349, −1.52864183852920667690863383206, 0, 1.52864183852920667690863383206, 2.00464481284006761161317912349, 3.21058126782501590355509344343, 5.77228250048644339424154430785, 6.36089133557433209159598559979, 7.75771880713616963171064615622, 8.532123877571841275489350473742, 9.454990563538288648450358976992, 9.875135698479995131413866252463

Graph of the $Z$-function along the critical line