L(s) = 1 | + (−0.358 − 2.78i)2-s + (−1.19 − 0.441i)3-s + (−5.66 + 1.48i)4-s + (0.0438 − 0.0193i)5-s + (−0.796 + 3.49i)6-s + (−1.37 − 0.177i)7-s + (4.05 + 10.0i)8-s + (−1.04 − 0.887i)9-s + (−0.0696 − 0.114i)10-s + (1.38 + 2.12i)11-s + (7.44 + 0.718i)12-s + (−0.159 − 2.48i)13-s + 3.88i·14-s + (−0.0610 + 0.00392i)15-s + (16.2 − 9.12i)16-s + (−7.15 − 0.229i)17-s + ⋯ |
L(s) = 1 | + (−0.253 − 1.96i)2-s + (−0.692 − 0.254i)3-s + (−2.83 + 0.742i)4-s + (0.0195 − 0.00867i)5-s + (−0.325 + 1.42i)6-s + (−0.520 − 0.0670i)7-s + (1.43 + 3.54i)8-s + (−0.347 − 0.295i)9-s + (−0.0220 − 0.0363i)10-s + (0.417 + 0.641i)11-s + (2.14 + 0.207i)12-s + (−0.0441 − 0.687i)13-s + 1.03i·14-s + (−0.0157 + 0.00101i)15-s + (4.05 − 2.28i)16-s + (−1.73 − 0.0556i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(0.359−0.932i)Λ(2−s)
Λ(s)=(=(197s/2ΓC(s+1/2)L(s)(0.359−0.932i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
0.359−0.932i
|
Analytic conductor: |
1.57305 |
Root analytic conductor: |
1.25421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :1/2), 0.359−0.932i)
|
Particular Values
L(1) |
≈ |
0.134404+0.0922043i |
L(21) |
≈ |
0.134404+0.0922043i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(12.9−5.32i)T |
good | 2 | 1+(0.358+2.78i)T+(−1.93+0.507i)T2 |
| 3 | 1+(1.19+0.441i)T+(2.28+1.94i)T2 |
| 5 | 1+(−0.0438+0.0193i)T+(3.36−3.70i)T2 |
| 7 | 1+(1.37+0.177i)T+(6.77+1.77i)T2 |
| 11 | 1+(−1.38−2.12i)T+(−4.45+10.0i)T2 |
| 13 | 1+(0.159+2.48i)T+(−12.8+1.66i)T2 |
| 17 | 1+(7.15+0.229i)T+(16.9+1.08i)T2 |
| 19 | 1+(1.48−1.86i)T+(−4.22−18.5i)T2 |
| 23 | 1+(3.60+1.19i)T+(18.4+13.7i)T2 |
| 29 | 1+(−0.442+4.58i)T+(−28.4−5.54i)T2 |
| 31 | 1+(−4.21+4.35i)T+(−0.993−30.9i)T2 |
| 37 | 1+(5.37+3.02i)T+(19.1+31.6i)T2 |
| 41 | 1+(0.165−5.14i)T+(−40.9−2.62i)T2 |
| 43 | 1+(−1.07+0.697i)T+(17.4−39.3i)T2 |
| 47 | 1+(1.07+1.53i)T+(−16.2+44.1i)T2 |
| 53 | 1+(9.14+1.78i)T+(49.1+19.8i)T2 |
| 59 | 1+(1.15−1.90i)T+(−27.2−52.3i)T2 |
| 61 | 1+(0.791+2.15i)T+(−46.4+39.5i)T2 |
| 67 | 1+(−10.3+7.25i)T+(23.1−62.8i)T2 |
| 71 | 1+(−3.07+3.61i)T+(−11.3−70.0i)T2 |
| 73 | 1+(−7.42+13.1i)T+(−37.8−62.4i)T2 |
| 79 | 1+(−13.4−5.96i)T+(53.1+58.4i)T2 |
| 83 | 1+(10.3+13.0i)T+(−18.4+80.9i)T2 |
| 89 | 1+(3.66+3.77i)T+(−2.85+88.9i)T2 |
| 97 | 1+(0.971−1.86i)T+(−55.4−79.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.63197630377756812412650363282, −10.94835856087882253106003686433, −9.935248242512608958444985619263, −9.195212188349906765809658151826, −8.047776058189067488954312551295, −6.24050978181463555962373972777, −4.76007411059383454465213562678, −3.58225130195631563945093215326, −2.09393820485516562332082652871, −0.16599833274372428335910684646,
4.16315713237469392724847254101, 5.17169034581936715009066666851, 6.34074321263398933467531480803, 6.71768822049406806883177716351, 8.273550813166706405378970464002, 8.935775787543297524645305309580, 9.990463907999834385115959546961, 11.14605868229078626495548021536, 12.61353212316450594530345094716, 13.85381787052922845275614156767