L(s) = 1 | + (0.235 + 1.82i)2-s + (−1.41 − 0.519i)3-s + (−1.35 + 0.354i)4-s + (3.07 − 1.36i)5-s + (0.616 − 2.70i)6-s + (1.72 + 0.221i)7-s + (0.417 + 1.03i)8-s + (−0.564 − 0.480i)9-s + (3.21 + 5.30i)10-s + (1.93 + 2.97i)11-s + (2.08 + 0.201i)12-s + (−0.00162 − 0.0253i)13-s + 3.19i·14-s + (−5.04 + 0.324i)15-s + (−4.21 + 2.37i)16-s + (−7.09 − 0.227i)17-s + ⋯ |
L(s) = 1 | + (0.166 + 1.29i)2-s + (−0.814 − 0.299i)3-s + (−0.675 + 0.177i)4-s + (1.37 − 0.609i)5-s + (0.251 − 1.10i)6-s + (0.650 + 0.0839i)7-s + (0.147 + 0.364i)8-s + (−0.188 − 0.160i)9-s + (1.01 + 1.67i)10-s + (0.583 + 0.896i)11-s + (0.603 + 0.0581i)12-s + (−0.000451 − 0.00702i)13-s + 0.855i·14-s + (−1.30 + 0.0836i)15-s + (−1.05 + 0.594i)16-s + (−1.71 − 0.0551i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(0.311−0.950i)Λ(2−s)
Λ(s)=(=(197s/2ΓC(s+1/2)L(s)(0.311−0.950i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
0.311−0.950i
|
Analytic conductor: |
1.57305 |
Root analytic conductor: |
1.25421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :1/2), 0.311−0.950i)
|
Particular Values
L(1) |
≈ |
1.06383+0.770739i |
L(21) |
≈ |
1.06383+0.770739i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(12.6−5.98i)T |
good | 2 | 1+(−0.235−1.82i)T+(−1.93+0.507i)T2 |
| 3 | 1+(1.41+0.519i)T+(2.28+1.94i)T2 |
| 5 | 1+(−3.07+1.36i)T+(3.36−3.70i)T2 |
| 7 | 1+(−1.72−0.221i)T+(6.77+1.77i)T2 |
| 11 | 1+(−1.93−2.97i)T+(−4.45+10.0i)T2 |
| 13 | 1+(0.00162+0.0253i)T+(−12.8+1.66i)T2 |
| 17 | 1+(7.09+0.227i)T+(16.9+1.08i)T2 |
| 19 | 1+(−3.73+4.67i)T+(−4.22−18.5i)T2 |
| 23 | 1+(−5.39−1.79i)T+(18.4+13.7i)T2 |
| 29 | 1+(0.0981−1.01i)T+(−28.4−5.54i)T2 |
| 31 | 1+(1.74−1.80i)T+(−0.993−30.9i)T2 |
| 37 | 1+(6.97+3.92i)T+(19.1+31.6i)T2 |
| 41 | 1+(−0.195+6.09i)T+(−40.9−2.62i)T2 |
| 43 | 1+(6.91−4.49i)T+(17.4−39.3i)T2 |
| 47 | 1+(5.29+7.59i)T+(−16.2+44.1i)T2 |
| 53 | 1+(−5.96−1.16i)T+(49.1+19.8i)T2 |
| 59 | 1+(−3.02+4.98i)T+(−27.2−52.3i)T2 |
| 61 | 1+(3.68+10.0i)T+(−46.4+39.5i)T2 |
| 67 | 1+(4.49−3.13i)T+(23.1−62.8i)T2 |
| 71 | 1+(0.356−0.418i)T+(−11.3−70.0i)T2 |
| 73 | 1+(0.188−0.335i)T+(−37.8−62.4i)T2 |
| 79 | 1+(8.92+3.95i)T+(53.1+58.4i)T2 |
| 83 | 1+(−4.68−5.87i)T+(−18.4+80.9i)T2 |
| 89 | 1+(−10.0−10.3i)T+(−2.85+88.9i)T2 |
| 97 | 1+(6.52−12.5i)T+(−55.4−79.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.98898522442670859662859145297, −11.72687359740397187530913583098, −10.89130074745008415022714084283, −9.301325388063228906234367801892, −8.730766700139651653971568981372, −7.02431702289028269807153184472, −6.56642304658558824631153584752, −5.27863188720498924270942535929, −4.95182289186391788104520258440, −1.85344062525715946578111910953,
1.65761570676836233845974465177, 3.00584958978506210387618352015, 4.63804081789556674424634714277, 5.82195291008100164718684349334, 6.78625702537659103695293060341, 8.711331469766409523037130258187, 9.839393884797584752071288735534, 10.65920265021098484618917286317, 11.20141042976455117126448851036, 11.87235148719255420835614704780