L(s) = 1 | + (0.347 + 2.69i)2-s + (2.38 + 0.877i)3-s + (−5.19 + 1.36i)4-s + (3.26 − 1.44i)5-s + (−1.53 + 6.72i)6-s + (−2.87 − 0.371i)7-s + (−3.43 − 8.49i)8-s + (2.63 + 2.24i)9-s + (5.02 + 8.28i)10-s + (−1.40 − 2.16i)11-s + (−13.5 − 1.31i)12-s + (0.0228 + 0.355i)13-s − 7.88i·14-s + (9.05 − 0.581i)15-s + (12.3 − 6.93i)16-s + (−2.47 − 0.0795i)17-s + ⋯ |
L(s) = 1 | + (0.245 + 1.90i)2-s + (1.37 + 0.506i)3-s + (−2.59 + 0.681i)4-s + (1.45 − 0.645i)5-s + (−0.627 + 2.74i)6-s + (−1.08 − 0.140i)7-s + (−1.21 − 3.00i)8-s + (0.878 + 0.747i)9-s + (1.58 + 2.62i)10-s + (−0.424 − 0.651i)11-s + (−3.92 − 0.378i)12-s + (0.00633 + 0.0987i)13-s − 2.10i·14-s + (2.33 − 0.150i)15-s + (3.07 − 1.73i)16-s + (−0.601 − 0.0192i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(−0.776−0.630i)Λ(2−s)
Λ(s)=(=(197s/2ΓC(s+1/2)L(s)(−0.776−0.630i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
−0.776−0.630i
|
Analytic conductor: |
1.57305 |
Root analytic conductor: |
1.25421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(10,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :1/2), −0.776−0.630i)
|
Particular Values
L(1) |
≈ |
0.609417+1.71675i |
L(21) |
≈ |
0.609417+1.71675i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(−1.05−13.9i)T |
good | 2 | 1+(−0.347−2.69i)T+(−1.93+0.507i)T2 |
| 3 | 1+(−2.38−0.877i)T+(2.28+1.94i)T2 |
| 5 | 1+(−3.26+1.44i)T+(3.36−3.70i)T2 |
| 7 | 1+(2.87+0.371i)T+(6.77+1.77i)T2 |
| 11 | 1+(1.40+2.16i)T+(−4.45+10.0i)T2 |
| 13 | 1+(−0.0228−0.355i)T+(−12.8+1.66i)T2 |
| 17 | 1+(2.47+0.0795i)T+(16.9+1.08i)T2 |
| 19 | 1+(0.242−0.304i)T+(−4.22−18.5i)T2 |
| 23 | 1+(−3.39−1.12i)T+(18.4+13.7i)T2 |
| 29 | 1+(−0.769+7.97i)T+(−28.4−5.54i)T2 |
| 31 | 1+(6.72−6.94i)T+(−0.993−30.9i)T2 |
| 37 | 1+(−2.04−1.15i)T+(19.1+31.6i)T2 |
| 41 | 1+(0.313−9.78i)T+(−40.9−2.62i)T2 |
| 43 | 1+(2.92−1.90i)T+(17.4−39.3i)T2 |
| 47 | 1+(−6.31−9.04i)T+(−16.2+44.1i)T2 |
| 53 | 1+(0.509+0.0992i)T+(49.1+19.8i)T2 |
| 59 | 1+(−1.02+1.68i)T+(−27.2−52.3i)T2 |
| 61 | 1+(−1.53−4.16i)T+(−46.4+39.5i)T2 |
| 67 | 1+(2.67−1.86i)T+(23.1−62.8i)T2 |
| 71 | 1+(0.0135−0.0158i)T+(−11.3−70.0i)T2 |
| 73 | 1+(−4.63+8.22i)T+(−37.8−62.4i)T2 |
| 79 | 1+(−0.520−0.230i)T+(53.1+58.4i)T2 |
| 83 | 1+(10.2+12.8i)T+(−18.4+80.9i)T2 |
| 89 | 1+(−3.22−3.33i)T+(−2.85+88.9i)T2 |
| 97 | 1+(−5.67+10.8i)T+(−55.4−79.5i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−13.23513432180635305994543469376, −12.99588938353789312344113052255, −10.09029046059736766310240093687, −9.310271476717173619437172554811, −8.919153357687933343502239905809, −7.907497808532381795424996364632, −6.56904150469092969228595619313, −5.72823404151821316729093016183, −4.52281235458261474236054826641, −3.10901679218620463295156717792,
2.00504065020792157007453849771, 2.60828385243588781137275803420, 3.60248627666923479691794508149, 5.44182765384508752156206015798, 6.99653583665974419290699337184, 8.820283495218757923127113288394, 9.369568668359902857542141005924, 10.11173156648671771418410487005, 10.91264852731586809117794863860, 12.57232003353270916567887652163