Properties

Label 2-197-197.10-c1-0-6
Degree $2$
Conductor $197$
Sign $-0.776 - 0.630i$
Analytic cond. $1.57305$
Root an. cond. $1.25421$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (0.347 + 2.69i)2-s + (2.38 + 0.877i)3-s + (−5.19 + 1.36i)4-s + (3.26 − 1.44i)5-s + (−1.53 + 6.72i)6-s + (−2.87 − 0.371i)7-s + (−3.43 − 8.49i)8-s + (2.63 + 2.24i)9-s + (5.02 + 8.28i)10-s + (−1.40 − 2.16i)11-s + (−13.5 − 1.31i)12-s + (0.0228 + 0.355i)13-s − 7.88i·14-s + (9.05 − 0.581i)15-s + (12.3 − 6.93i)16-s + (−2.47 − 0.0795i)17-s + ⋯
L(s)  = 1  + (0.245 + 1.90i)2-s + (1.37 + 0.506i)3-s + (−2.59 + 0.681i)4-s + (1.45 − 0.645i)5-s + (−0.627 + 2.74i)6-s + (−1.08 − 0.140i)7-s + (−1.21 − 3.00i)8-s + (0.878 + 0.747i)9-s + (1.58 + 2.62i)10-s + (−0.424 − 0.651i)11-s + (−3.92 − 0.378i)12-s + (0.00633 + 0.0987i)13-s − 2.10i·14-s + (2.33 − 0.150i)15-s + (3.07 − 1.73i)16-s + (−0.601 − 0.0192i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.776 - 0.630i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.776 - 0.630i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $-0.776 - 0.630i$
Analytic conductor: \(1.57305\)
Root analytic conductor: \(1.25421\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{197} (10, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 197,\ (\ :1/2),\ -0.776 - 0.630i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.609417 + 1.71675i\)
\(L(\frac12)\) \(\approx\) \(0.609417 + 1.71675i\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 + (-1.05 - 13.9i)T \)
good2 \( 1 + (-0.347 - 2.69i)T + (-1.93 + 0.507i)T^{2} \)
3 \( 1 + (-2.38 - 0.877i)T + (2.28 + 1.94i)T^{2} \)
5 \( 1 + (-3.26 + 1.44i)T + (3.36 - 3.70i)T^{2} \)
7 \( 1 + (2.87 + 0.371i)T + (6.77 + 1.77i)T^{2} \)
11 \( 1 + (1.40 + 2.16i)T + (-4.45 + 10.0i)T^{2} \)
13 \( 1 + (-0.0228 - 0.355i)T + (-12.8 + 1.66i)T^{2} \)
17 \( 1 + (2.47 + 0.0795i)T + (16.9 + 1.08i)T^{2} \)
19 \( 1 + (0.242 - 0.304i)T + (-4.22 - 18.5i)T^{2} \)
23 \( 1 + (-3.39 - 1.12i)T + (18.4 + 13.7i)T^{2} \)
29 \( 1 + (-0.769 + 7.97i)T + (-28.4 - 5.54i)T^{2} \)
31 \( 1 + (6.72 - 6.94i)T + (-0.993 - 30.9i)T^{2} \)
37 \( 1 + (-2.04 - 1.15i)T + (19.1 + 31.6i)T^{2} \)
41 \( 1 + (0.313 - 9.78i)T + (-40.9 - 2.62i)T^{2} \)
43 \( 1 + (2.92 - 1.90i)T + (17.4 - 39.3i)T^{2} \)
47 \( 1 + (-6.31 - 9.04i)T + (-16.2 + 44.1i)T^{2} \)
53 \( 1 + (0.509 + 0.0992i)T + (49.1 + 19.8i)T^{2} \)
59 \( 1 + (-1.02 + 1.68i)T + (-27.2 - 52.3i)T^{2} \)
61 \( 1 + (-1.53 - 4.16i)T + (-46.4 + 39.5i)T^{2} \)
67 \( 1 + (2.67 - 1.86i)T + (23.1 - 62.8i)T^{2} \)
71 \( 1 + (0.0135 - 0.0158i)T + (-11.3 - 70.0i)T^{2} \)
73 \( 1 + (-4.63 + 8.22i)T + (-37.8 - 62.4i)T^{2} \)
79 \( 1 + (-0.520 - 0.230i)T + (53.1 + 58.4i)T^{2} \)
83 \( 1 + (10.2 + 12.8i)T + (-18.4 + 80.9i)T^{2} \)
89 \( 1 + (-3.22 - 3.33i)T + (-2.85 + 88.9i)T^{2} \)
97 \( 1 + (-5.67 + 10.8i)T + (-55.4 - 79.5i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23513432180635305994543469376, −12.99588938353789312344113052255, −10.09029046059736766310240093687, −9.310271476717173619437172554811, −8.919153357687933343502239905809, −7.907497808532381795424996364632, −6.56904150469092969228595619313, −5.72823404151821316729093016183, −4.52281235458261474236054826641, −3.10901679218620463295156717792, 2.00504065020792157007453849771, 2.60828385243588781137275803420, 3.60248627666923479691794508149, 5.44182765384508752156206015798, 6.99653583665974419290699337184, 8.820283495218757923127113288394, 9.369568668359902857542141005924, 10.11173156648671771418410487005, 10.91264852731586809117794863860, 12.57232003353270916567887652163

Graph of the $Z$-function along the critical line