L(s) = 1 | + (0.661 − 0.173i)2-s + (−0.901 − 0.767i)3-s + (−1.33 + 0.751i)4-s + (−2.05 + 2.25i)5-s + (−0.729 − 0.351i)6-s + (−2.04 − 0.535i)7-s + (−1.73 + 1.68i)8-s + (−0.255 − 1.57i)9-s + (−0.965 + 1.85i)10-s + (−0.971 + 2.19i)11-s + (1.78 + 0.346i)12-s + (−0.311 + 0.0401i)13-s − 1.44·14-s + (3.58 − 0.462i)15-s + (0.732 − 1.20i)16-s + (−1.70 − 0.109i)17-s + ⋯ |
L(s) = 1 | + (0.467 − 0.122i)2-s + (−0.520 − 0.442i)3-s + (−0.667 + 0.375i)4-s + (−0.917 + 1.01i)5-s + (−0.297 − 0.143i)6-s + (−0.771 − 0.202i)7-s + (−0.613 + 0.594i)8-s + (−0.0850 − 0.526i)9-s + (−0.305 + 0.585i)10-s + (−0.292 + 0.661i)11-s + (0.513 + 0.100i)12-s + (−0.0863 + 0.0111i)13-s − 0.385·14-s + (0.925 − 0.119i)15-s + (0.183 − 0.302i)16-s + (−0.413 − 0.0265i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(−0.826−0.563i)Λ(2−s)
Λ(s)=(=(197s/2ΓC(s+1/2)L(s)(−0.826−0.563i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
−0.826−0.563i
|
Analytic conductor: |
1.57305 |
Root analytic conductor: |
1.25421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :1/2), −0.826−0.563i)
|
Particular Values
L(1) |
≈ |
0.0852926+0.276580i |
L(21) |
≈ |
0.0852926+0.276580i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(−14.0−0.430i)T |
good | 2 | 1+(−0.661+0.173i)T+(1.74−0.981i)T2 |
| 3 | 1+(0.901+0.767i)T+(0.478+2.96i)T2 |
| 5 | 1+(2.05−2.25i)T+(−0.480−4.97i)T2 |
| 7 | 1+(2.04+0.535i)T+(6.09+3.43i)T2 |
| 11 | 1+(0.971−2.19i)T+(−7.39−8.14i)T2 |
| 13 | 1+(0.311−0.0401i)T+(12.5−3.29i)T2 |
| 17 | 1+(1.70+0.109i)T+(16.8+2.17i)T2 |
| 19 | 1+(−0.307−1.34i)T+(−17.1+8.24i)T2 |
| 23 | 1+(−6.44−4.80i)T+(6.54+22.0i)T2 |
| 29 | 1+(4.06+0.792i)T+(26.8+10.8i)T2 |
| 31 | 1+(0.0946+2.95i)T+(−30.9+1.98i)T2 |
| 37 | 1+(2.84+4.70i)T+(−17.1+32.8i)T2 |
| 41 | 1+(11.4+0.733i)T+(40.6+5.24i)T2 |
| 43 | 1+(3.85−8.69i)T+(−28.9−31.8i)T2 |
| 47 | 1+(−1.83+4.97i)T+(−35.7−30.4i)T2 |
| 53 | 1+(−8.97−3.63i)T+(38.0+36.8i)T2 |
| 59 | 1+(−6.78−12.9i)T+(−33.7+48.3i)T2 |
| 61 | 1+(5.87−4.99i)T+(9.73−60.2i)T2 |
| 67 | 1+(0.845−2.29i)T+(−51.0−43.4i)T2 |
| 71 | 1+(−0.959−5.93i)T+(−67.3+22.3i)T2 |
| 73 | 1+(−3.22−5.31i)T+(−33.7+64.7i)T2 |
| 79 | 1+(5.14+5.66i)T+(−7.58+78.6i)T2 |
| 83 | 1+(−1.26+5.54i)T+(−74.7−36.0i)T2 |
| 89 | 1+(0.158−4.93i)T+(−88.8−5.70i)T2 |
| 97 | 1+(1.87+2.69i)T+(−33.5+91.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−12.88154755961236706192103350215, −11.92237889525726199121395035208, −11.33274171971045186844288966830, −10.02869008665277034453016045995, −8.923589071844206392712191202490, −7.47010480586380823157746547702, −6.85148834577901455609457908254, −5.49430576660087265013413273551, −3.96429378268650754452004150908, −3.09958653089239399915351920742,
0.23042069631894926541971987883, 3.48349484763176800868797192571, 4.76918179801761432276918029564, 5.27730771255927516199225419268, 6.64552138901980804846252045160, 8.332219960689758822571303289905, 8.998137072545795229724821595430, 10.17922725202754483530225311298, 11.18169673959266012661028185898, 12.28278208203515960950940148298