L(s) = 1 | + (−2.71 + 0.710i)2-s + (−1.73 − 1.47i)3-s + (5.09 − 2.87i)4-s + (2.16 − 2.38i)5-s + (5.74 + 2.76i)6-s + (−0.311 − 0.0815i)7-s + (−7.75 + 7.51i)8-s + (0.347 + 2.14i)9-s + (−4.17 + 8.00i)10-s + (0.579 − 1.30i)11-s + (−13.0 − 2.54i)12-s + (5.35 − 0.690i)13-s + 0.901·14-s + (−7.26 + 0.937i)15-s + (9.61 − 15.8i)16-s + (−1.74 − 0.112i)17-s + ⋯ |
L(s) = 1 | + (−1.91 + 0.502i)2-s + (−1.00 − 0.851i)3-s + (2.54 − 1.43i)4-s + (0.968 − 1.06i)5-s + (2.34 + 1.12i)6-s + (−0.117 − 0.0308i)7-s + (−2.74 + 2.65i)8-s + (0.115 + 0.715i)9-s + (−1.32 + 2.53i)10-s + (0.174 − 0.394i)11-s + (−3.77 − 0.734i)12-s + (1.48 − 0.191i)13-s + 0.240·14-s + (−1.87 + 0.241i)15-s + (2.40 − 3.96i)16-s + (−0.423 − 0.0272i)17-s + ⋯ |
Λ(s)=(=(197s/2ΓC(s)L(s)(−0.340+0.940i)Λ(2−s)
Λ(s)=(=(197s/2ΓC(s+1/2)L(s)(−0.340+0.940i)Λ(1−s)
Degree: |
2 |
Conductor: |
197
|
Sign: |
−0.340+0.940i
|
Analytic conductor: |
1.57305 |
Root analytic conductor: |
1.25421 |
Motivic weight: |
1 |
Rational: |
no |
Arithmetic: |
yes |
Character: |
χ197(100,⋅)
|
Primitive: |
yes
|
Self-dual: |
no
|
Analytic rank: |
0
|
Selberg data: |
(2, 197, ( :1/2), −0.340+0.940i)
|
Particular Values
L(1) |
≈ |
0.227809−0.324889i |
L(21) |
≈ |
0.227809−0.324889i |
L(23) |
|
not available |
L(1) |
|
not available |
L(s)=p∏Fp(p−s)−1 | p | Fp(T) |
---|
bad | 197 | 1+(3.06+13.6i)T |
good | 2 | 1+(2.71−0.710i)T+(1.74−0.981i)T2 |
| 3 | 1+(1.73+1.47i)T+(0.478+2.96i)T2 |
| 5 | 1+(−2.16+2.38i)T+(−0.480−4.97i)T2 |
| 7 | 1+(0.311+0.0815i)T+(6.09+3.43i)T2 |
| 11 | 1+(−0.579+1.30i)T+(−7.39−8.14i)T2 |
| 13 | 1+(−5.35+0.690i)T+(12.5−3.29i)T2 |
| 17 | 1+(1.74+0.112i)T+(16.8+2.17i)T2 |
| 19 | 1+(0.225+0.989i)T+(−17.1+8.24i)T2 |
| 23 | 1+(5.87+4.38i)T+(6.54+22.0i)T2 |
| 29 | 1+(0.371+0.0724i)T+(26.8+10.8i)T2 |
| 31 | 1+(−0.0695−2.16i)T+(−30.9+1.98i)T2 |
| 37 | 1+(3.78+6.25i)T+(−17.1+32.8i)T2 |
| 41 | 1+(−0.272−0.0175i)T+(40.6+5.24i)T2 |
| 43 | 1+(−0.676+1.52i)T+(−28.9−31.8i)T2 |
| 47 | 1+(−1.05+2.87i)T+(−35.7−30.4i)T2 |
| 53 | 1+(−6.87−2.78i)T+(38.0+36.8i)T2 |
| 59 | 1+(−2.32−4.45i)T+(−33.7+48.3i)T2 |
| 61 | 1+(6.39−5.44i)T+(9.73−60.2i)T2 |
| 67 | 1+(1.71−4.66i)T+(−51.0−43.4i)T2 |
| 71 | 1+(−0.809−5.00i)T+(−67.3+22.3i)T2 |
| 73 | 1+(−8.45−13.9i)T+(−33.7+64.7i)T2 |
| 79 | 1+(−0.481−0.529i)T+(−7.58+78.6i)T2 |
| 83 | 1+(−2.02+8.88i)T+(−74.7−36.0i)T2 |
| 89 | 1+(−0.342+10.6i)T+(−88.8−5.70i)T2 |
| 97 | 1+(3.35+4.80i)T+(−33.5+91.0i)T2 |
show more | |
show less | |
L(s)=p∏ j=1∏2(1−αj,pp−s)−1
Imaginary part of the first few zeros on the critical line
−11.87151523130749699038697236901, −10.98216264405659207499967031437, −10.11489064639826316458440933046, −8.919607772101589708647370985987, −8.453210618130742770406641817602, −7.04262115440058417756307760675, −6.09469482082494236542572486488, −5.65328539812188520506504431308, −1.82725357673576165911590519369, −0.73006402595193429844391398028,
1.90757575618628590863910621158, 3.55635110508069162038798843591, 6.05586324242357819824319640133, 6.55516811379251778811522973005, 7.982025400824696919687702729286, 9.325353050739661844511591683665, 9.936371344769342376492203252148, 10.69553992020443522911366543092, 11.17316901832508278236770964585, 12.06272821000927038082103277364