Properties

Label 2-197-197.102-c2-0-3
Degree $2$
Conductor $197$
Sign $-0.0863 - 0.996i$
Analytic cond. $5.36786$
Root an. cond. $2.31686$
Motivic weight $2$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (1.40 − 1.50i)2-s + (−0.0322 + 0.0101i)3-s + (−0.0153 − 0.238i)4-s + (−7.41 + 4.02i)5-s + (−0.0302 + 0.0627i)6-s + (−4.42 − 0.141i)7-s + (5.97 + 4.92i)8-s + (−7.38 + 5.14i)9-s + (−4.40 + 16.8i)10-s + (−0.401 − 2.76i)11-s + (0.00291 + 0.00754i)12-s + (0.150 + 9.39i)13-s + (−6.44 + 6.44i)14-s + (0.198 − 0.205i)15-s + (16.7 − 2.16i)16-s + (1.82 − 4.30i)17-s + ⋯
L(s)  = 1  + (0.704 − 0.750i)2-s + (−0.0107 + 0.00338i)3-s + (−0.00382 − 0.0596i)4-s + (−1.48 + 0.804i)5-s + (−0.00503 + 0.0104i)6-s + (−0.632 − 0.0202i)7-s + (0.746 + 0.615i)8-s + (−0.820 + 0.572i)9-s + (−0.440 + 1.68i)10-s + (−0.0364 − 0.251i)11-s + (0.000242 + 0.000628i)12-s + (0.0115 + 0.723i)13-s + (−0.460 + 0.460i)14-s + (0.0132 − 0.0136i)15-s + (1.04 − 0.135i)16-s + (0.107 − 0.253i)17-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0863 - 0.996i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 197 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.0863 - 0.996i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(197\)
Sign: $-0.0863 - 0.996i$
Analytic conductor: \(5.36786\)
Root analytic conductor: \(2.31686\)
Motivic weight: \(2\)
Rational: no
Arithmetic: yes
Character: $\chi_{197} (102, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 197,\ (\ :1),\ -0.0863 - 0.996i)\)

Particular Values

\(L(\frac{3}{2})\) \(\approx\) \(0.663718 + 0.723715i\)
\(L(\frac12)\) \(\approx\) \(0.663718 + 0.723715i\)
\(L(2)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad197 \( 1 + (49.6 + 190. i)T \)
good2 \( 1 + (-1.40 + 1.50i)T + (-0.256 - 3.99i)T^{2} \)
3 \( 1 + (0.0322 - 0.0101i)T + (7.38 - 5.14i)T^{2} \)
5 \( 1 + (7.41 - 4.02i)T + (13.6 - 20.9i)T^{2} \)
7 \( 1 + (4.42 + 0.141i)T + (48.8 + 3.13i)T^{2} \)
11 \( 1 + (0.401 + 2.76i)T + (-115. + 34.4i)T^{2} \)
13 \( 1 + (-0.150 - 9.39i)T + (-168. + 5.41i)T^{2} \)
17 \( 1 + (-1.82 + 4.30i)T + (-201. - 207. i)T^{2} \)
19 \( 1 + (1.48 - 0.340i)T + (325. - 156. i)T^{2} \)
23 \( 1 + (26.7 - 22.8i)T + (84.4 - 522. i)T^{2} \)
29 \( 1 + (-13.1 + 29.7i)T + (-565. - 622. i)T^{2} \)
31 \( 1 + (2.34 + 3.48i)T + (-360. + 890. i)T^{2} \)
37 \( 1 + (-58.3 - 7.51i)T + (1.32e3 + 347. i)T^{2} \)
41 \( 1 + (-12.2 - 30.3i)T + (-1.20e3 + 1.16e3i)T^{2} \)
43 \( 1 + (33.7 - 45.1i)T + (-526. - 1.77e3i)T^{2} \)
47 \( 1 + (0.915 - 0.554i)T + (1.02e3 - 1.95e3i)T^{2} \)
53 \( 1 + (-3.65 - 4.02i)T + (-269. + 2.79e3i)T^{2} \)
59 \( 1 + (62.4 - 16.3i)T + (3.03e3 - 1.70e3i)T^{2} \)
61 \( 1 + (-37.3 - 71.6i)T + (-2.12e3 + 3.05e3i)T^{2} \)
67 \( 1 + (-20.3 + 83.1i)T + (-3.97e3 - 2.07e3i)T^{2} \)
71 \( 1 + (-53.0 - 9.45i)T + (4.73e3 + 1.74e3i)T^{2} \)
73 \( 1 + (6.91 + 8.96i)T + (-1.35e3 + 5.15e3i)T^{2} \)
79 \( 1 + (-28.2 - 15.3i)T + (3.40e3 + 5.23e3i)T^{2} \)
83 \( 1 + (52.3 + 11.9i)T + (6.20e3 + 2.98e3i)T^{2} \)
89 \( 1 + (66.2 - 98.2i)T + (-2.97e3 - 7.34e3i)T^{2} \)
97 \( 1 + (38.8 - 68.9i)T + (-4.87e3 - 8.04e3i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.25903280000436511064344175631, −11.41830536050423783677846446310, −11.22443436091900850736976692272, −9.865936313240019726814986116552, −8.199086434520397349525546146586, −7.60911134774323831767073843772, −6.20469560798224323107014538208, −4.52872137514848222862693617047, −3.55726809839665170360502038727, −2.63584965157728175140710619918, 0.44241911021161864156982659297, 3.45537573963929071020203280429, 4.45899919931286372426696482890, 5.61441594830193252153632970837, 6.68564912893441781893213712105, 7.84293636724065831087144023073, 8.671990052646673647331716145389, 10.02171440443892022573479463568, 11.23541954386577280216562769038, 12.44343091917305881477333077856

Graph of the $Z$-function along the critical line